

<u>測定精度の評価</u>

2009/3/28 東北大学 吉田 幸平、他 ILDグループ

<u>ヒッグス崩壊分岐比測定</u>

本研究はLOIの物理モードの一つであるZH→vvbb,ccである。 ヒッグス粒子のbb,ccペアへの崩壊分岐比の測定精度を評価する。

▶ ZH生成過程を用いてヒッグス崩壊分岐比の測定精度を評価する。

ヒッグス崩壊分岐比					
bb	65.7%				
WW	15.0%				
ττ	8.0%				
gg	5.5%				
СС	3.6%				

≻ヒッグスからのジェットペアを観測する。
>Z→vvは観測できない。

-シグナルは2ジェット

(M₄: 120 GeV)

シミュレーション

重心系エネルギー: 250 GeV, **ルミノシティ**: 250 fb⁻¹ ビーム偏極: 電子(-80%), 陽電子(+30%)

▶ シグナル: 終状態が2ジェット

v _e v _e h	$v_{\mu}v_{\mu}h$	v _τ v _τ h	Total
9,086	5,138	5,135	19,360

≻バックグラウンド: 終状態が4フェルミオン

vvll	vlqq	pppp	vvqq	llqq		Total
1,113,014	4,114,190	4,048,386	149,979	393,817	762,973	10,582,360

2フェルミオンは含まない(消失質量カットで落ちる)

消失質量カット

▶2ジェットとして再構成して、そこから消失質量を求めた ▶Z->vvイベントを選ぶためのカット

▶80 GeV < 消失質量 < 140 GeV を選択する

IIIとIIqq, qqqqのイベントが抑制された。

>WW(W->vl)イベントを除くためのカット >荷電トラック数 > 10 を選択する。

カット後はtv,qqイベントが主なバックグラウンドになった。

 $Y_{2 \overline{y}_{\pi \nu}}$

➤τν_rqqイベントを除くために Y_{2ジェット} < 0.02 を選択 Y_{2ジェット}: 2ジェットとして再構成するための最小Y値

▶3ジェットを2ジェットとして再構成するとY値は大きくなる

b,cフレーバータグ

>ニューラルネットワークでトレーニング
 -重心系エネルギー: 91.2 GeV
 -e+e-→Z→qq(q=u,d,s,c,b)

Reduction Summary

	カットなし	消失質量	横運動量	縦運動量	N _{荷電トラック}	最大運動量	最小Y _{2ジェット}	最大Y _{2ジェット}	bタグ	cタグ
ZH	19360	15684	13918	13534	12859	11849	7689	7335	1843	691
H->bb	13179	11843	10498	10226	9931	9158	6744	6417	1838	
H->cc	675	608	557	547	531	469	354	348		200
v _e eqq	1460797	80931	67135	61437	25966	5088	961	851	0	84
ν _µ μqq	1327332	92360	75143	61715	52355	10540	2747	2288	0	314
$\nu_{\tau} \tau q q$	1326061	386690	268190	200443	176370	123045	29135	24979	0	4919
ννqq	149979	124843	85774	49745	43229	35942	26713	21653	1634	2718
other	6318190	491631	337800	266307	2676	2001	370	335	27	63

$$P_{bb} = \frac{N_{H \to bb}^{cut \&}}{N_{ZH}^{cut \&}} = \frac{1838}{1843} = 0.997 \qquad \varepsilon_{bb} = \frac{N_{H \to bb}^{cut \&}}{N_{H \to bb}} = \frac{1838}{13179} = 0.139$$
$$P_{cc} = \frac{N_{H \to cc}^{cut \&}}{N_{ZH}^{cut \&}} = \frac{200}{691} = 0.289 \qquad \varepsilon_{cc} = \frac{N_{H \to cc}^{cut \&}}{N_{H \to cc}} = \frac{200}{675} = 0.296$$

>ZHイベントの数をフィットから見積もった。
 N_{ZH}^{fit}=1713.5±60.6 (bタグ)
 N_{ZH}^{fit}=624.7±87.5 (cタグ)
 -: 4fバックグラウンド

崩壊分岐比は
$$Br(H \rightarrow ff) = \frac{N_{H \rightarrow ff}}{N_{ZH}}$$
 (f=b,c)で求められる。
ここで、 $N_{H \rightarrow ff} = \frac{P_{ff} \times N_{ZH}^{fit}}{\varepsilon_{ff}}$ である。
したがって、 $Br(H \rightarrow ff) = \frac{P_{ff} \times N_{ZH}^{fit}}{\varepsilon_{ff} \times N_{ZH}}$
測定精度は統計誤差だけ考慮して、
 $\frac{\Delta Br(H \rightarrow ff)}{Br(H \rightarrow ff)} = \frac{\Delta N_{ZH}^{fit}}{N_{ZH}^{fit}}$
で求まる。

$$N_{ZH}^{fit} = 1713.5, \Delta N_{ZH}^{fit} = 60.6 \longrightarrow \frac{\Delta Br(H \to bb)}{Br(H \to bb)} = 3.5\%$$

$$N_{ZH}^{fit} = 624.7, \Delta N_{ZH}^{fit} = 87.5 \longrightarrow \frac{\Delta Br(H \to cc)}{Br(H \to cc)} = 14.0\%$$
12

まとめ

▶ILCにおけるヒッグス崩壊分岐比の測定精度を評価した。

- 重心系エネルギー: 250 GeV
- -ルミノシティ: 250 fb⁻¹
- -結果
 - $\Delta Br(H \rightarrow bb)/Br(H \rightarrow bb)$: 3.5%
 - $\Delta Br(H \rightarrow cc)/Br(H \rightarrow cc)$: 14.0%

解析手順

<u>P⊤ cut</u>

$20 \text{ GeV} < P_{\tau} < 70 \text{ GeV}$

<u>P∟ cut</u>

 $-60 \text{ GeV} < P_{L} < 60 \text{ GeV}$

Momentum^{max} cut

Momentum^{max} is the highest momentum. Momentum^{max} < 30GeV

The distributions of the highest momentum

ννqqとν_ττqq ▶次はb,cタグ

力

<u>bタグによる bbサンプルの用意</u>

Preparation of cc-sample with bc-tag

シグナル

$$F(m) = N \int_{-m}^{M_H - m} dt (e^{B(m+t)} + C) (e^{-\frac{t^2}{2\sigma^2}} + Ae^{-\frac{t^2}{2\sigma'^2}})$$

バックグラウンド

 $G(m) = N(1 + Am + B(2m^{2} - 1) + C(4m^{3} - 3m) + D(8m^{4} - 8m^{2} + 1) + E(16m^{5} - 20m^{3} + 5m))$

<u>Measurement accuracy of BR</u>

≻ΔN_{vvH}^{fit} and N_{vvH}^{fit} in cc-sample, bb-sample is estimated by fitting Sig+B.G.

• $\Delta N_{_{VVH}}{}^{_{fit}}$: statistical error of $N_{_{VVH}}{}^{_{fit}}$

b-tagging N^{fit} : 1792.5 ΔN_{VVH}^{fit} : 90.8 c-tagging N_{VVH}^{fit} : 604 ΔN_{VVH}^{fit} : 195.2 bc-tagging N^{fit} : 2494 ΔN_{VVH}^{fit} : 402.4

Measurement accuracy of BR

≻The measurement accuracy of branching ratio of H→bb, H→cc are estimated by fitting result.

$$\frac{\Delta N_{vvbb}}{N_{vvbb}} = 5.1\% \text{ (b-tag)} \qquad \frac{\Delta N_{vvcc}}{N_{vvcc}} = 32.3\% \text{ (c-tag)} \\ \frac{\Delta N_{vvcc}}{N_{vvcc}} = 16.1\% \text{ (bc-tag)}$$

解析手順

① 2ジェットとして再構成する。
 ② バックグラウンドを除去する。

- ・消失質量カット
- 運動量カット(縦、横)
- レプトン数カット
- ・最大運動量カット
- y-valueカット(YPlus, YMinus)
- ③ シグナル(ee→ZH)でH→bb, ccを選択する。
 - bタグでH→bbを選択
 - cタグでH→ccを選択
- ④ ヒッグスの質量分布をフィットする。
- ⑤ フィット結果から崩壊分岐比の測定精度を見積もる。