KEK B-factory のアップグレード におけるTouschek 及び Beam-gas バックグラウンドの シミュレーション研究

東北大理 中野浩至

高工研^A, 東大理^B

山本均,中山浩幸^A,原隆宜^A,岩崎昌子^A, 宇野彰二^A,金澤健一^A,Karim Trabelsi^A,小磯晴代^A, 柴田恭^A,田中秀治^A,坪山透^A,幅淳二^A,船越義裕^A, 杉原進哉^B, Clement Ng^B, 他Belle MDI Group

山本均,中山浩幸^A,原隆宜^A,岩崎昌子^A, 宇野彰二^A,金澤健一^A,Karim Trabelsi^A,小磯晴代^A, 柴田恭^A,田中秀治^A,坪山透^A,幅淳二^A,船越義裕^A, 杉原伸哉^B, Clement Ng^B, 他Belle MDI Group KEK B-factory アップグレード

ビームバックグラウンド (ガス散乱)

ビームバックグラウンド (Touschek効果)

高密度・低エネルギーのビームに対して重要

アップグレードによって散乱率上昇 対策: 3.5 x 8.0 GeV を 4 x 7 GeV に それでも散乱粒子は現在の20~30倍程になると予想されている

アップグレード とビームバックグラウンド

シミュレーション方法

今回報告する内容

このシミュレーション方法で現在のKEKBのシミュレーションを行った

目的:シミュレーションの動作の信頼性の確認

1)ビームの寿命の見積もり

2)崩壊点検出器へのdose量

7

仮定、設定

ガス散乱の散乱率 → <u>圧力</u>に比例(主に一酸化炭素) CO分圧は正確にはわからない

1nTorr(一様)と 0.1nTorr(一様)の2つの仮定で計算。

ビームパラメータはデザイン値を使用

HER 電流	1.188A
LER 電流	1.637A
バンチ数	1584個
衝突点でのビ	ームサイズ (水平方向 / 垂直方向)
HER	147um / 0.94um
LER	127um / 0.94um

ビーム寿命の見積もり方法

損失率の計算

例)LER Toschek効果でエネルギーが増加するもの (エネルギー変化δ: 0.67% ~ 17.1%)

これらの範囲の散乱率を計算し、そのうちの 4.6% と 100% が失われるとする。 同様にTouschek効果でエネルギーが減少するものについても計算した

Touschek効果による寿命は204分と求まった。

ビーム寿命の見積もり

同様にガス散乱のビーム寿命を求め、合計の寿命T_{total}を求めた

$$\frac{1}{T_{total}} = \Sigma \frac{1}{T}$$

圧力1nTorrを仮定(圧力0.1nTorrを仮定)

実験値からの見積もり

	1/寿命 [min ⁻¹]		1/寿命 [min ⁻¹]
LER		LER	
Touschek	1 / 204	Touschek	1 / 61
ガス散乱	1 / 1060 (1 / 10604)	その他	1 / 833
合計	1 / 171 (1 / 200)	合計	1 / 57
HER	· · · · · · · · · · · · · · · · · · ·	HER	
Touschek	1 / 2725	Touschek	1 / 588
ガス散乱	1 / 696 (1 / 6959)	その他	1 / 3333
合計	1 / 554 (1 / 1959)	合計	1 / 500

寿命はファクター3~5程度で再現できている

Doseとなるイベント 例

崩壊点検出器へのdose量

崩壊点検出器の最も内側の層のdoseを調べた

シミュレーションの結果 1nTorr仮定(0.1nTorr仮定)、単位 krad / yr

KEKBアップグレードではTouschek効果、ガス散乱による ビームバックグラウンドが問題となる

そのためのシミュレーションを行っている。

シミュレーションの正確さを調べるため、 現在のKEKBのシミュレーションを行った。

寿命はファクター3~5程度で一致

Dose量はファクター5以下程度で再現できている

これらの結果を踏まえ、 今後はSuper KEKBのシミュレーションの準備を進めていく Back up

p:pressure[nTorr]

制動輻射 (δ:0.33~81%)

Brems

595.441p x 0.7345 + 16.8731p =454.2p [MHz]

クーロン散乱 (*θ*: 0.025~1.6mrad)

Coulomb 46243.925p x 0.02958 + 11.28989p =1379.2p [MHz]

LER dead rate

Tous(δ: 0.447~11.4%)

ALL_a=5.004e-01 Alive_a=4.866e-01 Dead_a=1.376e-02 ALL_b=4.992e-01 Alive_b=4.225e-01 Dead_b=7.668e-02

Energy gained Touschek

92221.704 x 0.01376 + 9.388/2 =1273.7MHz

Energy decreased Touschek

92221.704 x 0.07668 + 9.388/2 =7076.3MHz

Brem (δ : 0.33~27%)

Coul (θ : 0.1~6.4mrad)

p : pressure[nTorr]

Brems

691.513p x 0.7047 + 151.544p =638.9p [MHz]

Coulomb

20807.0594p x 0.04627 + 5.06p =967.8p [MHz]