

齋藤智之(東北大学)

浅野雅樹、田窪洋介、鍋島偉宏、波場直之、 藤井恵介、松本重貴、山本均、吉岡興一

2010/09/14 日本物理学会@九州工業大学

右巻きニュートリノNは重すぎて観測できない

・ Nが重くなくてもvを軽くできる ⇒ 例: $1/R \sim 100 \text{GeV} \rightarrow M_N \sim 100 \text{GeV}$

☞ 湯川結合が大きい
⇒ vとの混合が大きくSM粒子と大きなカップリング持つ
ILCでTeVスケールのNが観測できる
■ 100 -

バックグランドの少ない環境で新物理の探索可能

終状態のレプトンが e (electron-mode)と t (tau-mode)の場合を解析

反応断面積

シグナルとバックグランドの反応断面積を計算 (Physsim)

強力なバックグランド除去方法が必要

右巻きニュートリノの質量を再構成し評価

カットのまとめ					
	シグナル	Electron モード	evW	WW	
カット前	2090	3260	2231000	1980000	
$10 < E_{tau} < 150$	1880	2655	1574690	1155700	
$60 < M_{2jet} < 100$	1525	2227	1206880	833895	
Likelihood_enw > 0.63	1077	1837	112158	683066	
Likelihood_e > 0.11	999	996	81226	367250	
$80 < M_N < 160$	993	939	53093	94225	
135 < M _N (補正) < 165	821	554	12276	14861	
カット効率(%)	39.3%	17.0%	0.55%	0.75%	
信号有意度	4.86				

バックグランドが効率よく除去できた

Kinematic カットのみでは十分でないのでLikelihood解析を行った

Likelihood 変数 (よりτらしいイベントを選ぶ)

- ① τ jet の中のトラック数
- ② τ jet の中の最高エネルギーのトラックのエネルギー
- ③ 最高エネルギーのトラックを除いた τ jet のトータル エネルギー

右巻きニュートリノの質量分布

再構成したM_N分布からM_Nと反応断面積の精度を評価

崩壊分岐比の比によりモデルの特定ができることを示唆できた

Back up

ラグランジアン WEITER

$$\mathcal{L}_{\text{int}} = -\frac{g}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\pi R M_n} W_{\mu}^{\dagger} \bar{e} \gamma^{\mu} U_{\text{MNS}} \left(\frac{2M_{\nu}^d}{\delta_M}\right)^{\frac{1}{2}} P_L N_n$$
$$-\frac{g}{2\cos\theta_W} \sum_{n=1}^{\infty} \frac{1}{\pi R M_n} Z_{\mu} \bar{\nu}_d \gamma^{\mu} \left(\frac{2M_{\nu}^d}{\delta_M}\right)^{\frac{1}{2}} P_L N_n$$
$$-\sum_{n=1}^{\infty} \frac{1}{\pi R v} h \bar{\nu}_d \left(\frac{2M_{\nu}^d}{\delta_M}\right)^{\frac{1}{2}} P_R N_n + \text{h.c.}.$$

$$M_N = \frac{2n-1}{2R}(n=1,2,\cdots)$$

Kaluza-Klein(KK) mode N_1, N_2, \dots

n:KK mode *R*:余剰次元半径

$$M_{\nu} = \frac{m_D^2}{M} + \left(\frac{m_D^2}{3M} - \frac{m_D^2}{M}\right) + \left(\frac{m_D^2}{5M} - \frac{m_D^2}{3M}\right) \cdots$$

Oth KK 1st KK 2nd KK

KK モードそれぞれでシーソーが起き、M_v が軽くなる

	階層型	逆階層型	縮退型
v _e (eV)	0	0.041	0.20
v_{μ} (eV)	0.009	0.05	0.21
v_{τ} (eV)	0.059	0	0.26

Hierarchy	s_{13}	δ	φ_1	$arphi_2$
(N)	0.07	π	0	0
(\mathbf{I})	0.09	0	0	0
(D)	0.04	π	0	0

⇒タウのmissingの影響により シグナルのピークが広がる

カットのまとめ [階層型]

	Signal	Electron mode	evW	WW
before cut	2745	3260	2231000	1980000
$10 < E_{tau} < 150$	2483	2655	1574690	1155700
$60 < M_w < 100$	2016	2227	1206880	833895
likelihood_enw > 0.79	1338	1686	81995	64089
likelihood_e > 0.13	1231	858	56008	354982
$80 < M_N < 160$	1224	847	39358	86328
$135 < \text{new } M_N < 165$	1029	495	8989	13788
Cut Efficiency (%)	37.5%	15.2%	4.03%	0.70%
信号有意度	6.6			

バックグランドが効率よく除去できた