

B→[K*K]_DKの解析

2010/10/14 東北大学 素粒子実験研究室 鈴木 善明

- ・イントロダクション
- D→K*Kの解析
- 今後(qq̄ suppression)
 おわりに

イントロダクション

- 積分ルミノシティ: 1014 fb⁻¹ (Y(4S): 711 fb⁻¹)
- BelleIIへのアップグレードのため2010年6月に運転停止。

CKM行列

• Charged current weak interaction Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{int,qW}} &= -\frac{g}{\sqrt{2}} \left[\left(\overline{U}_L \gamma^{\mu} V D_L \right) W_{\mu}^{+} + \left(\overline{D}_L \gamma^{\mu} V^{\dagger} U_L \right) W_{\mu}^{-} \right] \\ & U = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D = \begin{pmatrix} d \\ s \\ b \end{pmatrix} \quad \textbf{g} \\ \textbf{g} \\$$

ユニタリー三角形

CKM行列はユニタリー行列であるから、 $VV^{\dagger} = 1$

- 大きな複素位相を押し込んだ要素を含む
- 各項の大きさ(辺の長さ)が同程度

・イントロダクション

- D→K*Kの解析
- 今後(qq̄ suppression)
 おわりに

$CP非保存角\phi_3$

$$\phi_{1} = 21.15^{\circ} + 0.90^{\circ} \\ -0.88^{\circ}$$

$$\phi_{2} = 89.0^{\circ} + 4.4^{\circ} \\ -4.2^{\circ}$$

$$\phi_{3} = 71^{\circ} + 21^{\circ} \\ -25^{\circ}$$
(CKMfitter, 2010)

$$\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right)$$
$$\sim \arg(V_{ub})$$

b→u遷移を含む崩壊 (B→DK)で測定が可能。

$B \rightarrow DK$

B⁻とB⁺の崩壊分岐比を測定することでδ, φ₃が求まる。

イントロダクション

- \$\phi_3\$の測定
- D→K*Kの解析
- 今後(qq̄ suppression)
 おわりに

D→K*Kの解析

 $D \rightarrow K * K$

Bの電荷と合わせてモードを判別する。 $B^{\bigoplus} \rightarrow [K^{* \bigoplus} K^{\pm}]_D K^{\pm}$ Opposite mode $B^{\bigoplus} \rightarrow [K^{* \bigoplus} K^{\mp}]_D K^{\pm}$ Same mode また、K*は $K^{*\pm} \rightarrow K^{\pm} \pi^0 : 1/3$ $K^{*\pm} \rightarrow K^0 \pi^{\pm} : 2/3$ で崩壊する。

シグナルモンテカルロ: ΔE フィット

期待されるイベント数

実際のデータでは、772×10⁶ 個(711 fb⁻¹)のB⁺B⁻対が生成された と見積もられる。

 $r_B = \left| \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)} \right| = 0.101, \quad r_D = \left| \frac{A(\bar{D}^0 \to K^{*+} K^-)}{A(D^0 \to K^{*+} K^-)} \right| = 0.589$

として各モードの生成数を見積もると、 Opposite mode $B^{\pm} \rightarrow [K^{*\mp}K^{\pm}]_D K^{\pm}: 1,060$ events Same mode $B^{\pm} \rightarrow [K^{*\pm}K^{\mp}]_D K^{\pm}: 375$ events

K*の崩壊の分岐比と各モードの検出効率から、

	Opposite mode	Same mode	∮3による増減
$K^* \rightarrow K \pi^0$	35 events	13 events	最大 ±4 events
$K^* \rightarrow K_S \pi$	33 events	12 events	最大 ±4 events

$B\overline{B} + q\overline{q}$ モンテカルロ

$K^* \rightarrow K\pi^0$, 実際のデータの2倍のサイズ $2^* q\bar{q}$ suppressionはしていない

灰:全体 赤:signal 青:全BG 緑:qq BG

$B\overline{B} + q\overline{q}$ モンテカルロ

K*→K_sπ, 実際のデータの2倍のサイズ ※qq̄ suppressionはしていない

灰:全体 赤:signal 青:全BG 緑:qq BG

$K^* \rightarrow K_S \pi = -F$ におけるpeaking BG

PDG(2006)によると、

$$BR(D^0 \to K_s K^- \pi^+) = (3.4 \pm 0.5) \times 10^{-3}$$
$$BR(D^0 \to [K_s \pi^+]_{K^{*+}} K^-) = (1.2 \pm 0.3) \times 10^{-3}$$

D⁰のphase spaceは非常に狭いため、大きく寄与する。

Dalitz Plot

Dalitz Plot

各モードのDalitz Plot (BB)

B→Dπ, MC(BB), 実際のデータの2倍のサイズ

これらのバックグラウンドはシグナル領域に入ってくるため、 慎重に扱う必要がある。

- D→K*Kの解析
 今後(qq̄ suppression)
 おわりに
- →₃の測定
- イントロダクション

$q\overline{q}$ suppression

シグナルとqqイベントで分布の異なるパラメータを Neural Net (NeuroBayes)にインプットし、分離させる。

- D→K*Kの解析
 今後(qq suppression)

LHCbとの比較

LHCb (M. Williams, CKM2010)

 136 ± 12 events, 300 nb⁻¹

Belle (Y. Horii, CKM2010)

Y. Horii

 $49,164 \pm 245$ events, 711 fb⁻¹

LHCbとの比較

LHCb (M. Williams, CKM2010)

 136 ± 12 events, 300 nb⁻¹

~450,000 events Belleの9倍!!

Belle (Y. Horii, CKM2010)

 $49,164 \pm 245$ events, 711 fb⁻¹

LHCbとの比較

LHCb (M. Williams, CKM2010)

 136 ± 12 events, 300 nb⁻¹

~450,000 events Belleの9倍!!

Belle (Y. Horii, CKM2010)

まとめ

- 今後はqq suppressionを行い、よりクリアな信号が得られる ようにしてゆく。

ご清聴、ありがとうございました。

理論

B⁺, B⁻のopposite mode, same modeの分岐比 $A[B^{-} \to K^{-}(K^{*+}K^{-})_{D}] = |A_{B}A_{D}| \left[1 + r_{B}r_{D}e^{i(\delta_{B}+\delta_{D}-\phi_{3})} \right] \quad \text{Opposite mode}$ $A[B^{-} \to K^{-}(K^{*-}K^{+})_{D}] = |A_{B}A_{D}|e^{i\delta_{D}} \left[r_{D} + r_{B}e^{i(\delta_{B}-\delta_{D}-\phi_{3})} \right] \quad \text{Same mode}$ $A[B^{+} \to K^{+}(K^{*-}K^{+})_{D}] = |A_{B}A_{D}| \left[1 + r_{B}r_{D}e^{i(\delta_{B}+\delta_{D}+\phi_{3})} \right] \quad \text{Opposite mode}$ $A[B^{+} \to K^{+}(K^{*+}K^{-})_{D}] = |A_{B}A_{D}|e^{i\delta_{D}} \left[r_{D} + r_{B}e^{i(\delta_{B}-\delta_{D}+\phi_{3})} \right] \quad \text{Same mode}$ $r_{B} = \left| \frac{\bar{A}_{B}}{A_{B}} \right| = \left| \frac{A(B^{-} \to \bar{D}^{0}K^{-})}{A(B^{-} \to D^{0}K^{-})} \right|, \quad r_{D} = \left| \frac{\bar{A}_{D}}{A_{D}} \right| = \left| \frac{A(\bar{D}^{0} \to K^{*+}K^{-})}{A(D^{0} \to K^{*+}K^{-})} \right|$

 r_D は他の測定で精度よく測定されている(既知数)とする。 \rightarrow 未知数は δ_D , δ_B , r_B , ϕ_3 の4つ。分岐比の4式を連立すれば解ける。

$$\cos\phi_3 = \frac{(R_1 + R_3 - 2)^2 - (R_2 + R_4 - 2r_D^2)^2}{4[(R_1 - 1)(R_3 - 1) - (R_2 - r_D^2)(R_4 - r_D^2)]}$$

$$R_1 = \left[\frac{A[B^- \to K^-(K^{*+}K^-)_D]}{A_B A_D}\right]^2, \ R_2 = \cdots$$

Reconstruction of $K^{*+} \to K^+ \pi^0$ mode

Selection criteria

Impact parameter	dr < 5mm, $ dz < 5cm$	
π^0 reconstruct	$E_{\gamma} > 30 \ MeV$, $\ \chi_{mass}{}^2 < 40$	
$M_{bc} \& \Delta E$	$5.27 < M_{bc} < 5.29 \ , \ \Delta E < 0.04$	
PID	for all charged K : PID(K) > 0.8	
mass	$\begin{split} M(K^+\pi^0) - M(K^{*+}) &< 0.075 \\ M(K^{*+}K^-) - M(D^0) &< 0.0159 \end{split}$	
helicity angle	for K^* : $ \cos\theta > 0.4$	
Best candidate selection	Use χ^2 of M _{bc} & M(D ⁰)	

Reconstructed parameter

Reconstruction of $K^{*+} \to K_S \pi^+$ mode

Selection criteria

Impact parameter	dr < 5mm, $ dz < 5cm$
$M_{bc} \& \Delta E$	$5.27 < M_{bc} < 5.29 \ , \ \Delta E < 0.04$
PID	for all charged K : PID(K) > 0.8 for all charged π : PID(π) < 0.2
mass	$\begin{split} M(\pi^{+}\pi^{-}) - M(K_{S}) &< 0.00208 \\ M(K_{S}\pi^{+}) - M(K^{*+}) &< 0.075 \\ M(K^{*+}K^{-}) - M(D^{0}) &< 0.0159 \end{split}$
helicity angle	for K^* : $ \cos\theta > 0.4$
Best candidate selection	Use χ^2 of M _{bc} & M(D ⁰)

Reconstructed parameter

Sum & Asymmetry

$$N_{\Theta} \equiv N[B^{\Theta} \to (K^{* \oplus} K^{-})_D K^{-}]$$

$$N_{\text{opp}} = N_{-+} + N_{+-}$$

$$A_{\text{opp}} = \frac{N_{-+} - N_{+-}}{N_{-+} + N_{+-}}$$
Opposite mode

$$N_{\text{same}} = N_{--} + N_{++}$$

$$A_{\text{same}} = \frac{N_{--} - N_{++}}{N_{--} + N_{++}}$$
Same mode

 $B \rightarrow D\pi$, $K^* \rightarrow K\pi^0$ mode N_{opp} , A_{opp}

$B\overline{B} + q\overline{q}$ モンテカルロ

 $K^* \rightarrow K\pi^0$, 実際のデータの2倍のサイズ $2^* q\bar{q}$ suppressionはしていない

$B\overline{B} + q\overline{q} + \gamma \overline{\lambda} + \gamma \overline$

K*→K_Sπ, 実際のデータの2倍のサイズ ※qq̄ suppressionはしていない

各モードのDalitz Plot (BB+qq)

B→Dπ, MC(BB+qq), 実際のデータの2倍のサイズ

各モードのDalitz Plot (BB)

B→Dπ, MC(BB), 実際のデータの2倍のサイズ

B→Dπ, MC(qq), 実際のデータの2倍のサイズ

