

Y(5S) 共鳴からのCP 非保存角φ₁ 測定 に向けたB-π タギングの研究

佐藤 優太郎 (東北大,D2)

高エネルギー物理 春の学校@ 彦根(2011/05/14)

1

- ・イントロ
 - KEKB/Belle
 - Y(5S) 共鳴
- B-π タギング (フレーバータグ)
 - ϕ₁ 測定方法
 - 解析手順
 - Event selection , B.G. study
 - MCによる測定精度の評価
- まとめ

KEKB / Belle

Y(5S) の崩壊モードから、CP 対称性の破れの角 φ1 の測定を目指す

Y(4S) 共鳴からの🗛 測定

- Tag side のB のフレーバーを識別する。
- CP side のB をCP 固有状態から再構成する。
- 崩壊点間距離(∆z)を測定する。

| 崩壊時間差(Δt)の分布にsin2φ1が現れる

- 2001 年にBelle, BaBar で測定され、2008 年の小林さん、益川さんのノーベル賞受賞に貢献。
- Belle 実験で取得した全データを用いた最終測定結果も。

sin $2\phi_1$: Combined sin $2\phi_1$ measurement

Combination of four modes:

 $S = 0.668 \pm 0.023 \pm 0.013$ (syst) $A = 0.007 \pm 0.016 \pm 0.013$ (syst)

Expect tension in CKM fit to be loosened

Systematic errors:

	ΔS	ΔA				
Vertexing	$^{+0.008}_{-0.009}$	±0.008				
Flavor tagging	$^{+0.004}_{-0.003}$	± 0.003				
Resolution function	± 0.007	± 0.001				
Physics parameters	± 0.001	< 0.001				
Fit bias	± 0.004	± 0.005				
$J/\psi K^0_S$ signal fraction	± 0.002	± 0.001				
$J/\psi K_L^0$ signal fraction	± 0.004	$^{+0.000}_{-0.002}$				
$\psi(2S)K^0_S$ signal fraction	< 0.001	< 0.001				
$\chi_{c1}K_S^0$ signal fraction	< 0.001	< 0.001				
Background Δt	± 0.001	< 0.001				
Tag-side interference	± 0.001	± 0.008				
Total	± 0.013	± 0.013				
Significant improvement in sys. error						
vertexing, resolution function)						

Belle preliminary

$B-\pi$ タギングを用いたY(5S) 共鳴からの ϕ_1 測定

• Y(5S) → B B π[±] モードでは、荷電π 中間子の符号からフレーバー タグをすることができる。

Y(5S)

CP side

崩壞時間差∆t [ps]

 $- B \rightarrow \eta_c K_s, \psi(2S) K_s, \pi^+\pi^-$

▶ 他のモードにも応用可能。

→ B-π タギングを用いた解析は、独立した物理結果が出せる。

解析手順

- 1. B⁰ をCP 固有状態から再構成する。 2. 再構成したB⁰ と π^+ から反跳質量を求める。 $M_{\text{mis-B}} = |P_{\text{mis-B}}| = |P - (P_{\text{rec-B}} + P_{\pi})|$ 3. イベント数の非対称度からsin 2 ϕ_1 を求める。 $\sin 2\phi_1 = \frac{1 + x^2}{x} \cdot \frac{N_+ - N_-}{N_+ + N_-}$ $\left[x \equiv \frac{\Delta m_{B^0}}{\Gamma_{B^0}} \sim 0.776\right] \left[\frac{N_+ : \# \text{ of } Y(5S) \Rightarrow \overline{B}^0 \text{ B}^+ \pi^-}{N_- : \# \text{ of } Y(5S) \Rightarrow \overline{B}^0 \text{ B}^- \pi^+} \right]$
- 荷電Bを再構成して、中性Bを反跳 質量として観測すると、コントロール サンプルとなる。
- 荷電π中間子の符号を隠して、解析中 (Blind analysis)

@ signal MC, 50,000 events $(B \rightarrow J/\psi(\mu\mu) K_S)$

期待されるイベント数

Belle で取得した全てのY(5S) データを用いた時に得られるシグナルの イベント数を計算した。

•
$$\Xi - F : B \rightarrow J/\psi(l^+l^-) K_S(\pi^+\pi^-)$$

$$\frac{N_{BB}}{(3.7 \times 10^7)} \approx \frac{Br (B^{(*)}B^{(*)}\pi^{\pm})}{R^{(*)}\pi^{\pm}} \frac{direct \pi}{efficiency} \qquad \frac{Br (J/\psi K_S)}{Br (J/\psi K_S)} \frac{Reconstruction}{efficiency} \\ \left(\frac{3.7 \times 10^7}{100} \times \frac{8.3}{100} \times \frac{2}{3}\right) \times 0.7 \times \left(\frac{0.087}{100} \times \frac{1}{2}\right) \times \frac{2.9}{100} \sim \underline{18 \text{ events}}$$

$$\frac{\sin 2\phi_1}{x} = \frac{1+x^2}{x} \cdot \frac{N_+ - N_-}{N_+ + N_-}$$

error $\sim \pm 0.5$ ~ 2 $error \sim \pm \frac{1}{\sqrt{18}}$

- → sin2\phi₁ のエラーは0.5 程度。
- ただし、B.G. の影響は考えてない。

イベント選択

Impact parameter

• dr < 2 cm, dz < 5 cm

Particle-ID

- **Muon** and **electron** ID > 0.1
- **Kaon** : $ID(K/\pi) > 0.1$

Beam constrained mass

•
$$M_{bc}$$
 : 5.268 ~ 5.440 GeV

+ 反跳質量を求めるための条件 PID Pion: $ID(\pi/K) > 0.1$ Beam constrained mass $M_{hc}: 5.348 \sim 5.440$ GeV

 \mathbf{B} : $|\mathbf{M}_{J/\psi K} - \mathbf{m}_{B}| < 20 \text{ MeV}$

Mass

continuum suppression

• R2 < 0.5

Mass

- J/ψ : $|M_{ll} m_{J/\psi}| < 30 \text{ MeV}$ (-100 MeV for e⁺e⁻,
 - including γ within 0.05 rad)

J/ψ, K_s, B に、キネマティックフィット (崩壊点、質量を固定)を使用。

カットの最適化

<u>rec-Bに対する選択条件の最適化</u>

- J/ψ mass window, lepton-ID, K-ID, continuum suppression
 - Y(4S) データ(~107 fb⁻¹) を使用。
 - Y(5S) とY(4S) のS/N の違いを補正するため、重み付きの Significance を定義。

mis-Bに対する選択条件の最適化

- rec-B mass window, rec-B momentum, π -ID
 - 6 倍の量のMCを使用。

バックグランド

MCを用いて、B.G. 源を確認した。

• $B(\rightarrow J/\psi K)$ の再構成は、低いバックグランドレベルで、できている。

反跳質量分布の(同時)フィット

 $sin2\phi_1$ 測定のために、反跳質量分布を同時フィットして、 BB π^{\pm} イベント数の非対称度 A_{charge} を求めた。

フィット関数

Fitting function

Gaussian (for $B^*B\pi + BB^*\pi$) + Gaussian (for $B^*B^*\pi$)-+ Argus (for B.G.)

Fixed parameters

- Width of Gaussians (σ_1, σ_2)
- Mean of Gaussians (μ_1, μ_2)
- Argus endpoint (E)

Floating parameters

- Normalization of Gaussians $(N_{1\pm}, N_{2\pm})$
- Normalization of Argus (N_{bg±})
- Argus shape parameter (a)

@ MC, 50,000 events ($B \rightarrow J/\psi(\mu\mu) K_S$)

フィット結果(シグナルモード)

14

A_{charge}

 $\sin 2\phi_1$

- 期待通りに、0と矛盾しない非対称度A_{charge}が得られた。
 (MC にはCP の破れの効果は入っていない。)
- sin2\$\oplus_1\$ のエラーは非対称度A_{charge} のエラーの約2 倍。

 - 混合パラメータ"x"のエラーは無視できる。
- → $sin2\phi_1$ のエラーは ~0.8

フィット結果(コントロールサンプルモード)

コントロールサンプルモードでも、期待通りに
 0と矛盾しない非対称度が得られている。

まとめ / プラン

- B-π タギングを用いて、Y(5S) 共鳴からCP 対称性の破れの角 φ₁ の測 定を目指している。
- B-π タギングはπの荷電からフレーバータグを行う。
- 従来の解析とは異なる系統誤差を持つ。
- Belle で取得したY(5S) データ(121 fb⁻¹) を用いた時のsin2φ₁ の測定 精度をMC で見積もった。

 $-\sigma_{sin2\phi1} \sim 0.8$

Backup Slides

粒子識別

$$Prob(i:j) = \frac{L(i)}{L(i) + L(j)}$$
$$L = L^{ACC} \times L^{TOF} \times L^{CDC}$$

CDC

ACC

Direct pion

*******	****************** mak	e hist	****	******	*****	**	*************	****
<hist 0=""></hist>	78900 events(78775	/	0 /	125)	:	Added-Files(0,)
<hist 1=""></hist>	73850 events(73781	/	0 /	69)	:	Added-Files(1,)
<hist 2=""></hist>	73882 events(73829	/	0 /	53)	:	Added-Files(2,)
<hist 3=""></hist>	62515 events(62458	/	0 /	57)	:	Added-Files(3,)
<hist 4=""></hist>	19531 events(19458	/	0 /	73)	:	Added-Files(4,)

100,000 events dr,dz のカットのみ(No PID)。

Direct pion candidates

