

$B \rightarrow DK, D \rightarrow K_s K\pi$ 崩壊によるCP非保存 角 ϕ_3 の測定に向けた $D^* \rightarrow D\pi, D \rightarrow K_s K\pi$ 崩壊のDalitz plot解析

2011年9月16日 東北大学 **鈴木 善明** and Belle collaboration 日本物理学会@弘前大学

目次

- ・イントロダクション
 - Belle実験
 - $-\phi_3$ の測定
 - コントロールサンプル $B^- \rightarrow D\pi^-, D \rightarrow K_s K^{\mp} \pi^{\pm}$
- $D^{*\pm} \rightarrow D\pi^{\pm}, D \rightarrow K_s K^{\mp} \pi^{\pm}$ 崩壊の研究
 - -*D*の選定
 - Dalitz plot のフィットの手法
 - 結果
- まとめ

- 積分ルミノシティ: 1014 fb⁻¹ (Y(4S): 711 fb⁻¹)
- SuperKEKB, BelleIIへのアップグレードのため2010年6月 に運転終了。

$CP非保存角\phi_3$

 ϕ_1, ϕ_2 は精度よく測定されており、 ϕ_3 の値が新物理の有 無(三角形が閉じるか否か)を決める。

 $\phi_{1} = 21.15^{\circ} + 0.90^{\circ} - 0.88^{\circ}$ $\phi_{2} = 89.0^{\circ} + 4.4^{\circ} - 4.2^{\circ}$ $\phi_{3} = 68^{\circ} + 13^{\circ} - 14^{\circ}$ $\phi_{4} \in CKMfitter ICHEP2010$

 ϕ_1, ϕ_2 : CKMfitter, ICHEP2010 ϕ_3 : CKMfitter, EPS2011 ϕ_{3} の測定精度の向上が課題 $\phi_{3} \equiv \arg\left(\frac{V_{ud}V_{ub}^{*}}{-V_{cd}V_{cb}^{*}}\right)$ $\sim -\arg\left(V_{ub}\right)$

*B→DK*崩壊

 $B^- \ge B^+$ の崩壊分岐比を測定することで δ, ϕ_3 が求まる。

本解析では、 $D \rightarrow K_{sK\pi}$ 崩壊を用いる。

- ・ 現在の ϕ_3 の最高精度の測定は $D \rightarrow K_S \pi \pi$ の Dalitz plot 解析。

特に最大の共鳴である $D \rightarrow K^{*+}K^{-}$ と $D \rightarrow K^{*-}K^{+}$ は同じ過程で崩壊し、同じパ ラメータが寄与するので、多くのパラ メータを決定することが出来る。

Control sample : $B \rightarrow D\pi$, $D \rightarrow KsK\pi$

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

Tagged D D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

 $B^{-} \rightarrow D \pi^{-}, D \rightarrow KsK^{-}\pi^{+}$

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

この2つの平面上の分布のモデルを重ね合わせてそれ ぞれの $B \rightarrow DK$, $D \rightarrow K_S K \pi$ の平面をフィットすることになる。

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

今回はこちらの Dalitz plot のフィット結果を示す。

Tagged Dの選定

- Y(4S) のデータ 141 fb⁻¹ を使用。
- $p^{*}(D^{*}) > 2.5 \text{ GeV/c}$
- | *Ks* mass (PDG) *Ks* mass | < 0.0125 (~4 σ)
- $PID(\pi) < 0.4, PID(K) > 0.6$
- D^0 mass と ΔM は 2σ でカット。

フィットの手法

- unbinned likelihood fit を利用。
- バックグラウンドは D の purity から フラクションを固定。
- バックグラウンドの形状は D mass の サイドバンドから決定。
- Dalitz plot 上の検出効率を考慮。

$\overline{K}_{0}^{*}(1430)^{0} K_{S}$
$\overline{K}^*(892)^0 K_S$
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$
$K_0^*(1430)^+ K^-$
K*(892) ⁺ K ⁻
$K_1^*(1680)^+ K^-$
$K_2^*(1430)^+ K^-$
$a_0(980)^- \pi^+$
$a_0(1450)^- \pi^+$
$a_2(1320)^- \pi^+$

共鳴の分布関数

$$\begin{split} & \text{Spin 0} \quad A_{0} = F_{D}F_{r} \frac{1}{M_{r}^{2} - M_{AB}^{2} - iM_{r}\Gamma_{AB}} \\ & \text{Spin 1} \quad A_{1} = F_{D}F_{r} \frac{M_{BC}^{2} - M_{AC}^{2} + \frac{(M_{D}^{2} - M_{C}^{2})(M_{A}^{2} - M_{B}^{2})}{M_{AB}^{2}}}{M_{r}^{2} - M_{AB}^{2} - iM_{r}\Gamma_{AB}} \\ & \text{Spin 2} \quad A_{1} = F_{D}F_{r} \frac{M_{BC}^{2} - M_{AC}^{2} + \frac{(M_{D}^{2} - M_{C}^{2})(M_{A}^{2} - M_{B}^{2})}{M_{AB}^{2}} - \frac{1}{M_{r}^{2} - M_{AB}^{2} - iM_{r}\Gamma_{AB}} \left[\left(M_{BC}^{2} - M_{AC}^{2} + \frac{(M_{D}^{2} - M_{C}^{2})(M_{A}^{2} - M_{B}^{2})}{M_{AB}^{2}} \right)^{2} \\ & - \frac{1}{3} \left(M_{AB}^{2} - 2M_{D}^{2} - 2M_{C}^{2} + \frac{(M_{D}^{2} - M_{C}^{2})^{2}}{M_{AB}^{2}} \right) \left(M_{AB}^{2} - 2M_{A}^{2} - 2M_{B}^{2} + \frac{(M_{A}^{2} - M_{B}^{2})^{2}}{M_{AB}^{2}} \right) \right] \\ & a_{0}(980)^{\pm} \quad A_{a_{0}}(980) = \frac{g_{KK}}{M_{r}^{2} - M_{AB}^{2} - i(\rho_{\eta\pi}g_{\eta\pi}^{2} + \rho_{KK}g_{K\overline{K}}^{2})} \\ & \text{S. Kopp et al. (CLEO Collaboration), Phys. Rev. D 63, 092001 (2001)} \\ & \text{$M r o PDF r r o T r v h f S_{0}}, \\ & PDF = f_{sig}N_{norm} \left| \sum_{j} a_{j}e^{i\varphi_{j}}A_{j} \right|^{2} + (1 - f_{sig})PDF_{bkg}} \right] \frac{7 - 5/2 + 2M_{B}^{2}}{f_{1}|\Sigma_{j}a_{j}e^{i\varphi_{j}}A_{j}|^{2}} \frac{14}{m_{x}^{2}dm_{y}^{2}} \\ & \text{$M r o PDF r o T r v h f S_{0}, PDF r o T$$

フィット結果

Events / 0.020 (GeV/c²)²

Mode	Fraction	Amplitude	Phase [rad]
$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.371	4.371 ± 0.740	0.097 ± 0.145
$\overline{K}^*(892)^0 K_S$	0.014	0.154 ± 0.018	-1.778 ± 0.103
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.131	5.935 ± 0.735	2.571 ± 0.139
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.007	1.235 ± 0.663	-1.943 ± 0.286
$K_0^*(1430)^+ K^-$	0.139	2.650 ± 0.675	-2.781 ± 0.256
$K^{*}(892)^{+} K^{-}$	0.553	1	0
$K_1^*(1680)^+ K^-$	0.204	7.405 ± 0.697	2.237 ± 0.117
$K_2^*(1430)^+ K^-$	0.014	1.709 ± 0.440	0.165 ± 0.237
$a_0(980)^- \pi^+$	0.019	1.075 ± 0.283	0.919 ± 0.217
${\cal g}_{K\overline{K}}$	0.481 ± 0.126		
$a_0(1450)^- \pi^+$	0.019	0.634 ± 0.109	-0.805 ± 0.207
$a_2(1320)^- \pi^+$	0.000005	0.015 ± 0.109	1.421 ± 4.695
Sum	1.496		

Black dots : data , Red line : fitted function

まとめ

$B \rightarrow DK, D \rightarrow K_S K \pi$ 崩壊を用いた ϕ_3 の測定を目指した 解析を行っている。

- $D \rightarrow K_S K \pi \sigma$ Dalitz plot 解析の有用な結果は未だない。
- フレーバーが分かる *D**+ →*D*⁰π⁺ 由来の *D*を用いて
 *D*⁰→*KsK⁻π*⁺ の Dalitz plot をフィットし、情報を得た。
- $D \rightarrow K_S K \pi \sigma$ Dalitz plot のフィット手法を確立し、 $D \rightarrow K_S K \pi$ を用いた ϕ_3 測定の可能性を示した。

プラン

- $D^0 \rightarrow K_S K^+ \pi^- \mathcal{O}$ Dalitz plot $\mathcal{O} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$
- Belle の全データを用いた解析を行う。
- 作成した D^0 の Dalitz plot のモデルを利用して $B \rightarrow DK$, $D \rightarrow K_S K \pi$ をフィットし、 ϕ_3 の情報を得る。

フィット結果

 $a_2(1320)^-$ is added.

Mode	Fraction	Amplitude	Phase [rad]
$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.371	4.371 ± 0.740	0.097 ± 0.145
$\overline{K}^*(892)^0 K_S$	0.014	0.154 ± 0.018	-1.778 ± 0.103
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.131	5.935 ± 0.735	2.571 ± 0.139
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.007	1.235 ± 0.663	-1.943 ± 0.286
$K_0^*(1430)^+ K^-$	0.139	2.650 ± 0.675	-2.781 ± 0.256
$K^*(892)^+ K^-$	0.553	1	0
$K_1^*(1680)^+ K^-$	0.204	7.405 ± 0.697	2.237 ± 0.117
$K_2^*(1430)^+ K^-$	0.014	1.709 ± 0.440	0.165 ± 0.237
$a_0(980)^- \pi^+$	0.019	1.075 ± 0.283	0.919 ± 0.217
$g_{\kappa \overline{\kappa}}$	0.481 ± 0.126		
$a_0(1450)^- \pi^+$	0.019	0.634 ± 0.109	-0.805 ± 0.207
$a_2(1320)^- \pi^+$	0.000005	0.015 ± 0.109	1.421 ± 4.695
Sum	1.496		

Black dots : data , Red line : fitted function

フィット結果

 $a_2(1320)^-$ is added. Used BG profile from MC

Mode	Fraction	Amplitude	Phase [rad]
$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.402	4.533±0.785	0.081 ± 0.137
$\overline{K}^*(892)^0 K_S$	0.014	0.155 ± 0.018	-1.776 ± 0.103
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.119	5.649 ± 0.724	2.549 ± 0.158
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.006	1.113 ± 0.708	-1.911 ± 0.332
$K_0^*(1430)^+ K^-$	0.133	2.584 ± 0.782	-2.837±0.259
$K^*(892)^+ K^-$	0.556	1	0
$K_1^*(1680)^+ K^-$	0.206	7.418 ± 0.715	2.245 ± 0.120
$K_2^*(1430)^+ K^-$	0.014	1.695 ± 0.445	0.174 ± 0.251
$a_0(980)^- \pi^+$	0.028	1.288 ± 0.300	0.965 ± 0.181
$g_{\kappa \overline{\kappa}}$	0.480 ± 0.113		
$a_0(1450)^- \pi^+$	0.018	0.621 ± 0.108	-0.861 ± 0.220
$a_2(1320)^- \pi^+$	0.00002	0.032 ± 0.077	1.393 ± 2.100
Sum	1.495		

Black dots : data , Red line : fitted function

フィット結果 $a_2(1320)^-$ and N.R are added.

Black dots : data , Red line : fitted function

Events / 0.020 (GeV/c²)²

フィット結果 $a_2(1320)^-$ and N.R are added. Used BG profile from MC

Amplitude

1

 0.476 ± 0.119

Phase [rad]

 0.309 ± 0.218

 -1.890 ± 0.123

 3.047 ± 0.096

 -1.989 ± 0.256

 -0.083 ± 0.578

0

 2.315 ± 0.139

 0.374 ± 0.112

 1.025 ± 0.267

 -0.640 ± 0.150

 -0.076 ± 0.958

 -2.355 ± 0.402

Black dots : data, Red line : fitted function

フィット結果

Used BG profile from MC

Mode	Fraction	Amplitude	Phase [rad]
$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.402	4.533±0.785	0.081 ± 0.137
$\overline{K}^*(892)^0 K_S$	0.014	0.155 ± 0.018	-1.776 ± 0.103
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.119	5.649 ± 0.724	2.549 ± 0.158
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.006	1.113 ± 0.708	-1.911 ± 0.332
$K_0^*(1430)^+ K^-$	0.133	2.584 ± 0.782	-2.837 ± 0.259
K*(892) ⁺ K ⁻	0.556	1	0
$K_1^*(1680)^+ K^-$	0.206	7.418 ± 0.715	2.245 ± 0.120
$K_2^*(1430)^+ K^-$	0.014	1.695 ± 0.445	0.174 ± 0.251
$a_0(980)^- \pi^+$	0.028	1.288 ± 0.300	0.965 ± 0.181
$g_{K\overline{K}}$	0.480±0.113		
$a_0(1450)^- \pi^+$	0.018	0.621 ± 0.108	-0.861 ± 0.220
$a_2(1320)^- \pi^+$	0.00002	0.032 ± 0.077	1.393 ± 2.100
Sum	1.495		

Black dots : data , Red line : fitted function

- δは D⁰の崩壊の種類による
- 希少崩壊のため統計が少ない

D⁰の崩壊毎の解析、特にまだ解析されて いない崩壊モードの解析が必要。

本解析では、 $D \rightarrow K_s K \pi$ 崩壊を用いる。

この崩壊は様々な中間共鳴状態を含むが、特にD→K*+K-とD→K*-K+は同じ過程で崩壊し、同じパラメータが寄与するので、多くのパラメータを決定することが出来る。

$$D \rightarrow [K_S \pi]_{K^*} K$$
$$D \rightarrow [K_S \pi^+]_{K^{*+}} K^-$$
$$D \rightarrow [K_S \pi^-]_{K^{*-}} K^+$$

$$\text{fraction} = \frac{\int |a_r e^{i\phi_r} \mathcal{A}_r|^2 d\mathcal{DP}}{\int |\sum_j a_j e^{i\phi_j} \mathcal{A}_j|^2 d\mathcal{DP}} = \frac{a_r^2 \int |\mathcal{A}_r|^2 d\mathcal{DP}}{\sum_j \sum_{j'} a_j a_{j'}^* \int \mathcal{A}_j \mathcal{A}_{j'}^* d\mathcal{DP}}$$

$$PDF = f_{sig} \frac{\left|\sum_{j} a_{j} e^{i\varphi_{j}} A_{j}\right|^{2}}{\int \left|\sum_{j} a_{j} e^{i\varphi_{j}} A_{j}\right|^{2} dm_{x}^{2} dm_{y}^{2}} + (1 - f_{sig}) PDF_{bkg}$$

- B→DK, D→ K_sKπ 崩壊の研究
 - KSFW Likelihood ratio
 - $コントロールサンプル(B \rightarrow D\pi, D \rightarrow KsK\pi)$ の研究
 - 期待される B→DK イベントの数
 - ダリッツ解析の必要性

B→DK, D→ K_sKπ崩壊の研究

Selection criteria

Impact parameter	dr < 5mm, $ dz < 5cm$
M _{bc}	$5.27 < M_{bc} < 5.29 \ GeV/c^2$
PID	for all charged K : PID(K) > 0.6 for all charged π : PID(π) < 0.4
Mass	$\begin{split} M(\pi^+\pi^-) - M(K_S) &< 0.0125 \; GeV/c^2 \\ M(K^*K) - M(D^0) &< 0.0159 \; GeV/c^2 \end{split}$
Best candidate selection	Use the best M _{bc}

Y(4S)の全データ(711 fb⁻¹)を使用。

Likelihood Ratio (KSFW)

信号事象の数は2次元フィット (KSFW Likelihood vs ΔE)によって 求められる。

KSFW: 運動量方向などからイベントの 形状を数値化する手法。

シグナル(Bを経由)は球状に、 qqイベントはジェット状に分布

KSFW Likelihood (MC)

シグナルとqqバックグラウンドはよく分離できている。

フィットに用いるPDF

for signal	Double gaussian
for $B\overline{B}$ background	Exponential
for $q\bar{q}$ background	1 st chebyshev

For KSFW likelihood Histogram PDF

for signal	Obtained from signal MC
for $B\overline{B}$ background	Obtained from $B\overline{B}$ MC
for $q\overline{q}$ background	Obtained from $q\overline{q}$ MC

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{-}\pi^{+}$

Projection for each axis

Blue dashed : $q\overline{q}$ BG, Green dashed : $B\overline{B}$ BG

Signal events : $1359 \pm 44(\text{stat})$

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{+}\pi^{-}$

Projection for each axis

Signal events : $946 \pm 38(\text{stat})$

期待されるB→DKイベントの数

B⁻→D π^- , D→KsK⁻ π^+ : 1,359 ± 44(stat) events B⁻→D π^- , D→KsK⁺ π^- : 946 ± 38(stat) events

 $B \rightarrow DK, D \rightarrow K\pi の解析によると、$

(Y. Horii, K. Trabelsi, H. Yamamoto et al., PRD 78, 071901(R) (2008))

 $\frac{Br(B^{-} \rightarrow DK^{-})}{Br(B^{-} \rightarrow D\pi^{-})} = [6.77 \pm 0.23(stat) \pm 0.30(syst)] \times 10^{-2}$

期待される $B \rightarrow DK$, $D \rightarrow K_s K \pi 1 \prec \nu h o$ 数は、

B⁻→DK⁻, D→KsK⁻ π^+ : 92 ± 6 events B⁻→DK⁻, D→KsK⁺ π^- : 64 ± 4 events

Dalitz plot (real data) with $|\Delta E| > 0.04$ GeV & LR(KSFW) > 0.2

K*Kのイベントが支配的

より複雑な構造が見て取れる (K*K, K*⁰K⁰, non-resonant, etc.)

これらのダリッツプロットをフィットし、それぞれの共鳴状態の振幅などの情報を得る必要がある。

Tagged D events

フィットに用いるD→KsK π のダリッツ平面のモデルはtagged D (from D*+→D⁰ π +, D*-→D⁰ π -)を用いて作られる。

Y(4S) の全データを用いた場合に期待されるtagged D のイベント数は D⁰→KsK⁻π⁺:~70,000 events D⁰→KsK⁺π⁻:~44,000 events

Tagged D D Dalitz Plot

このダリッツプロットから作成したモデルを使ってB→DKのダ リッツプロットをフィットすることになる。

 $B \rightarrow DK \overline{C} U^{0} E \overline{D}^{0} dE D \overline{D}^{0} e^{-\pi^{+}} E^{-\pi^{+}} D^{0} \rightarrow K_{s} K^{-} \pi^{+} e^{-\pi^{+}} D^{0} \rightarrow K_{s} K^{-} \pi^{+} e^{-\pi^{+}} D^{0} n^{-} F^{-} F^{-} n^{-} D^{0} n^{-} F^{-} F^{-} n^{-} D^{0} n^{-} F^{-} n^{-} n$

まとめ

- B→DK, D→KsKπ崩壊を用いた

 _{\$\phi_3\$}の測定は未だなされていない
- 2次元フィット(△E versus LR(KSFW))を行い、B→Dπ, D→KsKπのシ グナルを得た。

B⁻→D π ⁻, D→KsK⁻ π ⁺ : 1,359 ± 44(stat) events B⁻→D π ⁻, D→KsK⁺ π ⁻ : 946 ± 38(stat) events (Belleの全データ(770M BB events)を使用)

- ダリッツ解析に用いられるB⁻→DK⁻のイベント数を見積もった。
 B⁻→DK⁻, D→KsK⁻π⁺: 92 ± 6 events
 B⁻→DK⁻, D→KsK⁺π⁻: 64 ± 4 events
- 今後は統計量の多いtagged D からD \rightarrow KsK π のモデルを作成する。

 $D^{0}(D^{0}) \rightarrow K^{*+}K^{-} \\ D^{0}(\overline{D^{0}}) \rightarrow K^{*-}K^{+}$ の2つの終状態が存在する。

Bの電荷と合わせてモードを判別する。 $B^{\oplus} \rightarrow [K^{*\oplus}K^{\pm}]_D K^{\pm}$ Opposite mode $B^{\oplus} \rightarrow [K^{*\oplus}K^{\mp}]_D K^{\pm}$ Same mode また、K*は $K^{*\pm} \rightarrow K^{\pm}\pi^0 : 1/3$ $K^{*\pm} \rightarrow K^0\pi^{\pm} : 2/3$ で崩壊する。

理論(変形GW法)

B⁺, B⁻のopposite mode, same modeの分岐比 $A[B^{-} \to K^{-}(K^{*+}K^{-})_{D}] = |A_{B}A_{D}| \left[1 + r_{B}r_{D}e^{i(\delta_{B} + \delta_{D} - \phi_{3})}\right] \quad \text{Opposite mode}$ $A[B^{-} \to K^{-}(K^{*-}K^{+})_{D}] = |A_{B}A_{D}|e^{i\delta_{D}}\left[r_{D} + r_{B}e^{i(\delta_{B} - \delta_{D} - \phi_{3})}\right] \quad \text{Same mode}$ $A[B^{+} \to K^{+}(K^{*-}K^{+})_{D}] = |A_{B}A_{D}| \left[1 + r_{B}r_{D}e^{i(\delta_{B} + \delta_{D} + \phi_{3})}\right] \quad \text{Opposite mode}$ $A[B^{+} \to K^{+}(K^{*+}K^{-})_{D}] = |A_{B}A_{D}|e^{i\delta_{D}}\left[r_{D} + r_{B}e^{i(\delta_{B} - \delta_{D} + \phi_{3})}\right] \quad \text{Same mode}$ $r_{B} = \left|\frac{\bar{A}_{B}}{A_{B}}\right| = \left|\frac{A(B^{-} \to \bar{D}^{0}K^{-})}{A(B^{-} \to D^{0}K^{-})}\right|, \quad r_{D} = \left|\frac{\bar{A}_{D}}{A_{D}}\right| = \left|\frac{A(\bar{D}^{0} \to K^{*+}K^{-})}{A(D^{0} \to K^{*+}K^{-}}\right|$

 r_{D} は他の測定で精度よく測定されている(既知数)とする。 \rightarrow 未知数は $\delta_{D}, \delta_{B}, r_{B}, \phi_{3}$ の4つ。分岐比の4式を連立すれば解ける。

$$\cos \phi_3 = \frac{(R_1 + R_3 - 2)^2 - (R_2 + R_4 - 2r_D^2)^2}{4[(R_1 - 1)(R_3 - 1) - (R_2 - r_D^2)(R_4 - r_D^2)]}$$

$$R_1 = \left[\frac{A[B^- \to K^-(K^{*+}K^-)_D]}{A_B A_D}\right]^2, \ R_2 = \cdots$$

∆EとKSFWの相関

△EとKSFW likelihoodはほとんど相関を持たない。

そのため、2次元フィットのためのPDFは、単純に△Eと KSFW likelihoodのPDFの積として表すことが出来る。

The merit of LR(KSFW)

These distributions are reasonable.

Dalitz plot (real data) with $|\Delta E| > 0.04$ GeV & LR(KSFW) > 0.8

$D^0 \rightarrow KsK^-\pi^+ \mathcal{O}Dalitz$ Plot

$D^0 \rightarrow KsK^+\pi^- \mathcal{O}Dalitz$ Plot

