B→D*π崩壊を用いたCP対称性の破れの測定

板垣 憲之輔 (東北大学)

- ・導入
- 再構成

– Signal MC, Generic MC

- Generic MC を使用した Signal fraction の見積もり
- Generic MC $\mathcal{O}\Delta t$ fit
- ・ まとめと 計画

導入:B⁰→D^{*}π崩壊

F渉項の位相 $\arg\left(-\frac{V_{td}^{*}V_{tb}}{V_{tb}}\frac{V_{ub}V_{cd}^{*}}{V_{t}^{*}V_{tb}}\right) = \arg\left(\frac{V_{cd}V_{cb}^{*}}{-V_{tb}}\frac{V_{cd}V_{cb}^{*}}{-V_{tb}}\frac{V_{ud}V_{ub}^{*}}{-V_{tb}}\right) = 2\phi_{1} + \phi_{3}$

導入:B⁰→D^{*}π 崩壊

B⁰→D^{*}πの崩壊率

$$P(B^{0} \rightarrow D^{*\mp} \pi^{\pm}) = \frac{e^{-|\Delta t|} / \pi_{B^{0}}}{8 \pi_{B^{0}}} \left[1 \pm C \cos(\Delta m \Delta t) - S^{\mp} \sin(\Delta m \Delta t) \right]$$

$$P(\overline{B}^{0} \rightarrow D^{*\pm} \pi^{\mp}) = \frac{e^{-|\Delta t|} / \pi_{B^{0}}}{8 \pi_{B^{0}}} \left[1 \pm C \cos(\Delta m \Delta t) + S^{\pm} \sin(\Delta m \Delta t) \right]$$

$$S^{\pm} = -\frac{2R}{1+R^{2}} \sin(2\phi_{1} + \phi_{3} \pm \delta), C = \frac{1-R^{2}}{1+R^{2}} \approx 1$$

B⁰→D^{*}πの崩壊時間分布を測定する

導入:今までの結果

partial reconstruction と full reconstruction

- 再構成方法
 - Partial reconstruction

荷電πのみ観測 – 運動量、電荷、方向

- ・ Dの下位崩壊によらないため、検出効率が良い
- Full reconstruction

・信号事象/背景事象の比が良い

導入: my analysis

- Belle 全データを使用した full reconstruction
- 使用する下位崩壊
 D^{*}→D⁰π
 D⁰→Kπ, Kππ⁰, Kπππ, K_sππ
 D^{*}→Dπ⁰

$\Delta E PDF$

- Signal fraction を計算するため、 ΔΕ PDF を見積もった 実験データの 5倍の統計量を使用
 範囲: 5.27 GeV < Mbc < 5.29 GeV
 -0.15 GeV < ΔE < 0.15 GeV
- 得られた中性/荷電 B 背景事象の∆E PDF

$\Delta E PDF$

• △E をfit し、 signal fraction を求めた

∆t fit

• <u>∆t</u>: B_{tag} とB_{CP}の崩壊時間差

• PDF

 $P(\Delta t) = (1 - f_{ol}) \left[f_{sig} P_{sig} + (1 - f_{sig}) \right] \left\{ f_{B^0 \overline{B}^0} P_{B^0 \overline{B}^0} + f_{B^+ B^-} P_{B^+ B^-} + (1 - f_{B^0 \overline{B}^0} - f_{B^+ B^-}) P_{con} \right\} \right] + f_{ol} P_{ol}$

P_{sig}: ∲₃を含む信号事象項
 P_{B⁰B⁰}: 中性B中間子背景事象項
 P_{B⁺B⁻}: 荷電B中間子背景事象項
 P_{con}: B中間子以外の背景事象項
 P_{ol}: 検出器のresolution の補正項

- Generic MC $\mathcal{O}\Delta t$ fit
 - Fitter program の挙動確認
 - B 背景事象項の決定

• τ , $\Delta m \epsilon$ fit

$$P_{sig}(\Delta t, q_{tag}, q_{cp}) = \frac{1}{8\tau} e^{-|\Delta t|/\tau} \left\{ 1 - q_{tag} \Delta w_{rbin}^{official} - q_{tag} q_{cp} (1 - 2w_{rbin}^{official}) \cos(\Delta m \Delta t) \right\}$$

$$B_{tag} = \overline{B}^{0}, f_{CP} = D^{*-} \pi^{+} \succeq B_{tag} = B^{0}, f_{CP} = D^{*+} \pi^{-}$$

$$B_{tag} = \overline{B}^{0}, f_{CP} = D^{*+} \pi^{-} \succeq B_{tag} = B^{0}, f_{CP} = D^{*-} \pi^{+}$$

$$\delta = 0$$
として統合 $\rightarrow \sin$ 項を無視

w, Δw: flavor tagの間違いを補正

$$w = \frac{w_{B^0} + w_{\overline{B}^0}}{2}, \Delta w = w_{B^0} - w_{\overline{B}^0}$$

Official wrong tag fraction を使用

R bin #	official wrong tag fraction		
Bin#0	w = 0.5	Δw=0.	
Bin#1	w = 0.412222	Δw=0.0569661	
Bin#2	w = 0.307838	∆w=0.0126192	
Bin#3	w = 0.212765	∆w=0.0147724	
Bin#4	w = 0.149933	Δw=0.000550289	
Bin#5	w = 0.0913264	Δw=0.00887704	
Bin#6	w = 0.0218754	Δw=0.00465683	

背景事象の∆t fit

- 背景事象のPDFを得るため、各々をfit
- Fit 範囲: -0.15 GeV < ΔE < 0.15 GeV, 5.2 GeV < M_{bc} < 5.3 GeV

中性B中間子背景事象のΔt fit

• Fit 結果

Name	Value
τ_{B0BG}	1.525 ± 0.019 (ps)
Δm	0.516 ± 0.013
w ₀	0.50 (fixed)
w_1	0.45 ± 0.02
w ₂	0.29 ± 0.02
W ₃	0.23 ± 0.02
w ₄	0.18 ± 0.02
W ₅	0.12 ± 0.02
W ₆	0.03 ± 0.01

荷電B中間子背景事象のΔt fit

• Fit 結果

Name	Value
τ_{chgB}	1.599±0.029 (p
w ₀	0.50 (fixed)
\mathbf{w}_1	0.44 ± 0.02
W ₂	0.32 ± 0.02
w ₃	0.26 ± 0.02
W_4	0.16 ± 0.02
W ₅	0.13 ± 0.02
W ₆	0.04 ± 0.01

B以外の背景事象の∆t fit

信号事象+背景事象

• signal fraction に従って背景事象を加え、信号事象の τ , Δm をfit

まとめ

B→D^{*}π 解析を進行中.

– D^{*}→D⁰π, D⁰→Kπ を解析中
 – BG PDFs が MC から得られた

計画

- S^{\pm} fit for MC
- ・ 他の下位崩壊を加えての∆t fit

Buck up

Signal event selection

- ➤ 正確なvertex の決定のための Fast pion への要求
- Impact parameter
 - radial : *dr* < 0.1 *cm*
 - longitudinal : $|dz| < 2.0 \ cm$
 - >SVDにヒットをもつ

- ≻ Polar angle in the laboratory frame : $30^{\circ} < \theta_{lab} < 135^{\circ}$
- The vertex positions are obtained by fits of the candidate tracks with the IP.
- Lepton, kaon hypothesis と一致しない
 - Based on information from the CDC, TOF and ACC.
- Fast pion cms momentum : $1.83 \frac{GeV}{c} < p_{\pi_f} < 2.43 \frac{GeV}{c}$

Signal event selection

- Slow pion cms momentum : $0.05 \, {}^{GeV/_c} < p_{\pi_s} < 0.30 \, {}^{GeV/_c}$
- Particle identification のとき、slow pion には何の条件も課さない
- Vertexing に使用しない
- IP から生じることのみ要求する
- fast pion とslow pion は逆の電荷をもつ

再構成

• $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K \pi$ 信号選択

Slow π 以外の π		D ⁰	
	SVD hit in r- $\phi \ge 1$, z ≥ 2		1.82 GeV < Μκπ < 1.92 GeV
	$Pid(K/\pi) \leq 0.7$	D*	
К			0.143 GeV < M _{D*} –M _{D0} < 0.148 GeV
	SVD hit : π と同じ Pid(K/ π) ≧ 0.3	В	5.2 GeV < M _{bc} < 5.3 GeV
Slow π 要求なし			-0.15 GeV < ∆E < 0.15 GeV 最良候補選択(M _{bc} , M _{D*} –M _D 。)

Neutral B BG Δ E PDF

Charged B BG Δ E PDF

 $B^{\pm} \rightarrow D^{*0}\pi$

100

40

20

-0.1

-0.05

 γ^2 /ndf = 1.317495

0.05

0

Bifurcated gaussian

0.1

0.15

B reconstruction

• Generic MC were reconstructed.

r bin

• r bin : bin definition of the flavor tagging category

R bin #		wrong tag fraction for SVD2 MC		
Bin#0	$0 <= \mathbf{r} <= 0.1$	w = 0.5	$\Delta w = 0.$	
Bin#1	0.1 < r <= 0.25	w = 0.412222	$\Delta w = 0.0569661$	
Bin#2	0.25 < r <= 0.5	w = 0.307838	$\Delta w = 0.0126192$	
Bin#3	0.5 < r <= 0.625	w = 0.212765	$\Delta w = 0.0147724$	
Bin#4	0.625 < r <= 0.75	w = 0.149933	$\Delta w = 0.000550289$	
Bin#5	0.75 < r <= 0.875	w = 0.0913264	$\Delta w = 0.00887704$	
Bin#6	0.875 < r <= 1.0	w = 0.0218754	$\Delta w = 0.00465683$	

Signal + B⁰B⁰Background

• To check the correctness of BG PDF, Signal + $B^0\overline{B^0}$ BG was fitted.

Signal + B⁺B⁻ Background

• To check the correctness of BG PDF, Signal $+ B^+B^-BG$ was fitted.

Signal + continuum Background

• To check the correctness of BG PDF, Signal + continuum BG was fitted.

D*π 数

- 771.581 x 10⁶ x 2.76 x 10⁻³ = 2.13 x 10⁶ - $K\pi$: x 67.7 x 10⁻² x 3.89 x 10⁻² = 56000
- 使用する下位崩壊
 D^{*}→D⁰π (67.7%)
 D⁰→Kπ (3.89%), Kππ⁰ (13.9%), Kπππ (8.09%), K_sππ (2.94%)
 D^{*}→Dπ⁰ (30.7%)
 D→Kππ (9.4%)