

B⁰ → DK^{*0}崩壊の研究

東北大学 根岸 健太郎

Bワークショップ @ 磐梯熱海

・序論

-Belle実験

$-CP非保存角<math>\phi_3$ $-B \rightarrow DK崩壊$

- R_{DK*}測定
- ・まとめ

Belle実験について CP非保存角 ϕ_3 とは ϕ_3 測定のためのB \rightarrow DK崩壊

Belle実験

• Belle実験

- e^+e^- 衝突でY(4S)(bbレゾナンス)を生成 Y(4S) $\rightarrow B^+B^- \sim 50\%$ $\rightarrow B^0\overline{B}^0 \sim 50\%$

- KEKB加速器
 - e⁻: 8.0 GeV, e⁺ 3.5 GeV, 重心エネルギー10.6 GeV (非線形)

$CP非保存角 \phi_3$

- CKM(Caibbo-小林-益川)行列
 - 弱い相互作用のCharged currentに入ってくる行列
 - 質量の固有状態とフレイバーの固有状態を混合

$$\mathcal{L}_{int} = -\frac{g}{\sqrt{2}} (\bar{U}_L \gamma_\mu V_{CKM} D_L W_\mu^+) + h.c. \qquad \begin{array}{l} \mathrm{U} = (\mathrm{u, c, t}) \\ \mathrm{D} = (\mathrm{d, s, b}) \\ \mathrm{U}_\mathrm{L}, \mathrm{D}_\mathrm{L} : \texttt{ 左巻き成分} \end{array}$$

$CP非保存角 \phi_3$

- CKM(Caibbo-小林-益川)行列
 - 弱い相互作用のCharged currentに入ってくる行列
 - 質量の固有状態とフレイバーの固有状態を混合

- CKM行列はユニタリでなければならない

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ 各成分は複素数 複素位相はV_{ub}, V_{td}に押し込める事が出来る

$CP非保存角 \phi_3$

- CKM(Caibbo-小林-益川)行列
 - 弱い相互作用のCharged currentに入ってくる行列
 - 質量の固有状態とフレイバーの固有状態を混合

$$\mathcal{L}_{int} = -\frac{g}{\sqrt{2}} (\bar{U}_L \gamma_\mu V_{CKM} D_L W^+_\mu) + h.c. \qquad \begin{array}{l} \mathrm{U} = (\mathrm{u}, \mathrm{c}, \mathrm{t}) \\ \mathrm{D} = (\mathrm{d}, \mathrm{s}, \mathrm{b}) \\ \mathrm{U}_\mathrm{L}, \mathrm{D}_\mathrm{L} : \texttt{\texttt{E}} \overset{}{=} \texttt{\texttt{b}} \texttt{id} \overset{}{\to} \texttt{f} \overset{}{\to$$

- CKM行列はユニタリでなければならない

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \qquad V_{CKM}V_{CKM}^{\dagger} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

- 各項が複素数 → 複素平面上に三角形 → ユニタリ三角形

ユニタリ三角形

$$\phi_1 = (21.15^{+0.90}_{-0.88})^{\circ}$$

 $\phi_2 = (89.0^{+4.4}_{-4.2})^{\circ}$
 $\phi_3 = (68^{+13}_{-14})^{\circ}$ ICHEP 2010
 ϕ_3 の精度が悪い
精度の向上
 \rightarrow SMパラメターの精密測定
 \rightarrow New Physicsの手掛かり?

b → u遷移のある(V_{ub}の含まれる)モードで観測する事となる。
 – どのように観測するか → 次ページ

ϕ_3 測定とB → DK崩壊 D: D⁰ or \overline{D}^0

- D⁰, D⁰が同じ終状態 f へ崩壊
 - 終状態が同じ二つのtree diagramが干渉
- 経路Alcb \rightarrow u遷移が含まれる $\rightarrow \phi_3$ の影響が入ってくる

かなりざっくりした説明↑ 勿論他にも色々効果が入って来る訳で、、、 もう少し具体的に、

- どんな観測量を測るのか?
- どんなfを使うの?

ϕ_3 測定とB → DK崩壊 D: D⁰ or \overline{D}^0

Charge conjugateで弱い相互作用の位相は符号が反転する。
 経路A,B間でに異なる強い相互作用の位相δが入ってくる

観測されるのは赤い線の(経路A,Bの干渉を経た)二乗

B → DK崩壊に続くD崩壊の例 -ADS法-

• $D \rightarrow K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, etc

D. Atwood, I. Dunietz and A. Soni, PRL78, 3257 (1997) PRD 63, 036005 (2001)

11

- D崩壊がFlavor Specific (Favored, Suppressed mode)
- Sup. modeで崩壊振幅は小さい、CP非保存の影響が大きい

B → DK崩壊に続くD崩壊の例 -GLW法-

- $D \rightarrow K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, etc
 - D崩壊がFlavor Specific (Favored, Suppressed mode)
 - Sup.modeで崩壊振幅は小さい、CP非保存の影響が大きい
- M. Gronau and D. Wyler, PLB 265, 172 (1991) $D \rightarrow KK, \pi\pi, etc$ D崩壊がCP固有モード 典型的に求める二つの変数 - 比較的大きな崩壊振幅 $R_{\pm} = \frac{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D_{\text{fav}}K^-) + \Gamma(B^+ \to D_{\text{fav}}K^+)}$ $= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$ $A_{\pm} = \frac{\Gamma(B^- \to D_{\pm}K^-) - \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)}$ $=\frac{\pm 2r_B\sin\delta_B\sin\phi_3}{R_+}$ $A(B^+ \rightarrow D^0 K^+)$ $D_{CP\pm} = \frac{(D^0 + D^0)}{\sqrt{2}}$ $\sqrt{2A(B^+ \rightarrow D_{CP\pm}K^-)}$ $(B^{-} \rightarrow \overline{D}^{0} K^{-})$ $V2A(B^{-} \rightarrow D_{CP^{+}}K^{-})$ $A(B^{-} \rightarrow D^{0}K^{-}) = A(B^{+} \rightarrow \overline{D}^{0}K^{+})$

B → DK崩壊に続くD崩壊の例 –Dalitz plot analysis–

- $D \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi$, etc
 - D崩壊がFlavor Specific (Favored, Suppressed mode)
 - Sup.modeで崩壊振幅は小さい、CP非保存の影響が大きい

A. Poluektov, PRL81, 112002 (2010)

 $\phi_3 = (78.4 \pm 3.6(stat.) \pm 8.9(syst.)^{+11.6}_{-10.8}(model))^{\circ}$

$B \rightarrow DK$ を用いた ϕ_3 測定

- $D \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi, etc$
 - D崩壊がFlavor Specific (Favored, Suppressed mode)
 - Sup.modeで崩壊振幅は小さい、CP非保存の影響が大きい
- $D \rightarrow KK, \pi\pi, etc$
 - D崩壊がCP固有モード
 - 比較的大きな崩壊振幅
- $D \rightarrow K_{S}\pi\pi$, etc
 - D崩壊が三体崩壊
 - 三体崩壊のレゾナンス分布に \$\,0 影響が現れる
 - ・ 経由するレゾナンスにより強い相互作用の位相が異なる
- 全部ひっくるめて、連立方程式を作る事になるので、
 他のモードを解析すればする程 \$\phi_3\$の制限がかかる!

 ϕ_3 の測定の一般的なお話オワリ、 次からは自分の研究した $B^0 \rightarrow DK^{*0}$ について

$B^0 \to DK^{*0}$

• Neutral Bを使うということは、、、

★ B⁰-B⁰ mixingの効果 (φ₃以外の効果)が入ってきてしまう

頑張ろうとすると、 Δt, qr, …色々測らないといけない物が増える。

$B^0 \rightarrow DK^{*0}$

• Neutral Bを使うということは、、、

★ B⁰-B⁰ mixingの効果(ϕ_3 以外の効果)が入ってきてしまう - K^{*0}によるSelf Taggingで解決 K^{*0} → $\begin{cases}
K^+\pi^- \sim 2/3 \\
K^0\pi^0 \sim 1/3
\end{cases}$

 $K^+\pi^- \tilde{c}K^*$ を組んだ $\rightarrow K^{*0} \rightarrow B^0$ の崩壊 $K^-\pi^+ \tilde{c}K^*$ を組んだ $\rightarrow \overline{K}^{*0} \rightarrow \overline{B}^0$ の崩壊

えらい楽

$B^0 \to DK^{*0}$

• Neutral Bを使うということは、、、

Selection Criteria

K[±]/π[±]同定

- Efficiency = 90 %, Fake rate ~ 10 %

- D⁰, K^{*0}の再構成
 - $D^0: |M_{K\pi} M_{D0}| < 0.015 \text{ GeV} (\pm 3\sigma)$
 - $K^{*0}: |M_{K\pi} M_{K^{*0}}| < 0.050 \text{ GeV} (\pm 1\Gamma)$
- B⁰の再構成

- 二つの運動学的変数を利用 $M_{bc} \equiv \sqrt{E_{beam}^2 - (p_{D^0} + p_{K^{*0}})^2}$ ·再構成したBの不変質量に対応 $|M_{bc} - M_{B0}| < 0.008 \text{ GeV} (\pm 3\sigma)$ $\Delta E \equiv E_{D^0} + E_{K^{*0}} - E_{beam}$ ·エネルギーの保存に対応

シグナルだと~0 •Fit → シグナルの導出

バックグラウンドの抑制

- ϕ_3 測定のモードはは基本的にバックグラウンドとの戦いである – BBバックグラウンド: B \rightarrow XY...
- qqバックグラウンド: $e^+e^- \rightarrow qq$ (q = (u, d, s, c))
- BBバックグラウンドの抑制
 - 終状態が同じになる崩壊を抑制
 - $[K^{-}K^{-}\pi^{+}]D^{-}\pi^{+}$
 - D*イベント
 - D^{*+} → D⁰π⁺崩壊のD⁰を捉え
 シグナルを再構成してしまう
 ΔM < 0.15 GeV のイベントを除去

$$\Delta M : M_{D^{*\pm}} - m_{D0}$$

 $\Delta M \sim m_{\pi} (0.140 \text{ GeV})$ にビーイ

qqバックグラウンドの抑制

- Neural Network (NeuroBayes)
 - qqバックグラウンドとシグナルで分布の違う変数をインプットし、
 Neural Networkで分離させる、B→DKでは新しい手法

Result

B⁰→[Kπ]DK^{*0}でR_{ADS}を測定

- まとめ
 - SMのパラメータの測定それ自体とても重要
 - New Physicsの手掛かりとなる可能性
 - Neutral Bでの ϕ_3 測定は未だ行われていない
 - Charged Bでの結果とのクロスチェック
 - B⁰→[Kπ]DK^{*0}でのR_{DK},の上限値を更新する事に成功
 - R_{DK*} < 0.24 (95% C.L.) @BaBar 2009 with 465M BB < 0.16 (95% C.L.) @Belle My result with 772M BB
 - ・ただいま論文を書いている所です。大変です。
- 今後の方針、課題
 - $B^0 \rightarrow [K_S \pi \pi] DK^{*0} \mathcal{O} Dalitz 解析$
 - 一生懸命頑張りたいと思います。

BACK UP

$$R_{DK^*} \equiv \frac{\Gamma(B^0 \to [K^+\pi^-]_D K + \pi^-) + \Gamma(\bar{B}^0 \to [K^-\pi^+]_D K^-\pi^+)}{\Gamma(B^0 \to [K^-\pi^+]_D K^+\pi^-) + \Gamma(\bar{B}^0 \to [K^+\pi^-]_D K^-\pi^+)} = r_S^2 + r_D^2 + 2kk_D r_S r_D \cos(\delta_S + \delta_D) \cos\phi_3$$

R_{DK*}

$$A_{DK^*} \equiv \frac{\Gamma(B^0 \to [K^+\pi^-]_D K + \pi^-) - \Gamma(\bar{B}^0 \to [K^-\pi^+]_D K^-\pi^+)}{\Gamma(B^0 \to [K^+\pi^-]_D K^+\pi^-) + \Gamma(\bar{B}^0 \to [K^-\pi^+]_D K^-\pi^+)} \\ = \frac{2kk_D r_S r_D \sin(\delta_S + \delta_D) \sin\phi_3}{R_{DK^*}}$$

他の実験で良く測定されている

$$r_D^2 \equiv \frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} \qquad \qquad k_D e^{i\delta_D} \equiv \frac{\int dm A_{DCS}(m) A_{CF}(m) e^{i\delta(m)}}{\sqrt{\int dm A_{DCS}^2(m) \int dm A_{CF}^2(m)}} = \frac{\int dm A_{DCS}^2(m)}{\int dm A_{CF}^2(m)}$$

Neurobayes

NB_{TRANS}

Phi-T

120 140

Error Testsample

Training iteration

0.006

0.004

0.002

arb. units o

0.002

0.004

0.006

20 40 60 80 100

NeuroBayes[®] Teacher

Error

0.008

0.006

Phi-T NeuroBayes[®] Teacher

NeuroBayes® Teacher

Phi-T

Phi-T NeuroBayes® Teacher

correlation matrix of input variables

31

Phi-T

NeuroBayes® Teacher

flat

purity

fina

separation

1

backgrour

0.9

Phi-T NeuroBayes[®] Teacher

1 2 . 3 4 5 6 7 🔍 8 9 10 11 input layer hidden layer output layer

PDF

We perform Δ E-NB' 2D fit.

PDF for ΔE

- Signal: a double Gaussian fixed from signal MC
- Combinatorial BB: free exponential
- $D^0 \rho^0$:
- D^0K^+ : Fixed from MC
- $D^0\pi^+$:
- Peaking BGs: fixed from MC
 [K*⁰π⁻]_{D-} K⁺
- qq: free 1st order Chebychev

- Signal: a double Gaussian fixed from signal MC
- Comb. BB:
- $D^0 \rho^0$:
- D^0K^+ :
- $\mathrm{D}^{0}\pi^{+}$:
- Peaking BGs:
- qq: a double Gaussian fixed from M_{bc} sideband of the data.

Double Gaussians

Fixed from MC

• The yields and shapes are fixed in the fit on signal MC.

Systematic uncertainty

Source	R _{DK*} [10 ⁻²]	
Det. Eff.	+ 0.08 - 0.08	/
PDF	+ 2.81 - 1.85	
Fit bias	+ 0.36 - 0.01	
Total	+ 2.83 - 1.85	

Sig.	+ 0.05 - 0.17	•
$\overline{\mathrm{D}}{}^{0}\mathrm{r}{}^{0}$	+ 0.04 - 0.08	•
$\overline{D}{}^{0}K^{+}$	+ 0.01 - 0.03	
$\overline{D}{}^0p^+$	+ 0.01 - 0.05	
BB	+ 1.76 - 1.17	
qq	+ 2.19 - 1.40	
Peaking	+ 0.07 - 0.12	
sum	+ 2.81 - 1.85	

٠

$$R_{DK^*} = (4.1^{+5.6}_{-5.0}, -1.8) \times 10^{-2}$$

- Detection efficiency: MC statistics and PID calibration.
 - PDF:
 - Uncertainties due to fixed shape parameters are obtained by varying them ±1s.
 - Uncertainty due to NB' PDF of BB BG is estimated by applying signal PDF. Assign obtained difference to + and sides (conservative).
 - Uncertainty due to the peaking background is estimated by applying 0-2 times the expected yields.
 - Uncertainties due to the D^0K^+ and D^0p^+ yields are obtained by applying the error of efficiency and BR.
- Fit bias: obtain the pull distribution from 10,000 pseudo-experiments.

Upper limit on R_{DK*}

• We obtain the upper limit by using an asymmetric Gaussian, where the positive and negative widths correspond to positive and negative errors including the syst. err.

$$R_{DK^*} = (4.1^{+5.6}_{-5.0} + 2.8) \times 10^{-2} \\ < 0.16 \ (95\% \text{ C.L.})$$

BaBar'09
$$R_{DK*} < 0.24 (95 \% C.L.)$$