

# Search for Higgs portal Dark matter

### 東北大学 素粒子実験研究室 M2 山本 歩 11/05



- 1. 導入
- 2. ILC
- 3. 解析条件
- 4. シグナルとバックグランド事象の選定
- 5. 物理事象の再構成
- 6. バックグランド事象の除去
- 7. シグナル生成断面積のUpper limit

### Introduction

標準模型は基礎的な物理現象を記述する模型として成功を収め、 未発見であったヒッグス粒子もATLAS実験で発見された

しかし、標準模型では説明できない問題も存在し、本研究の動機づけとなる 問題として暗黒物質問題をとりあげる

#### 暗黒物質

→光と相互作用しない未知の物質、宇宙に23%存在

→渦巻銀河の回転速度の観測結果からその存在が示唆

暗黒物質が、ヒッグスとのみ相互作用する模型ーヒッグス・ポータル模型ー による場合、ハドロンコライダーによる暗黒物質の発見は難しい

> ILC実験のような電子陽電子衝突型加速器での ヒッグス・ポータル模型での暗黒物質の検出感度を調べる

## International Linear Colider (電子陽電子衝突型線形加速器)





Electro polarization  $\frac{N_{e^-R} - N_{e^-L}}{N_{e^-R} + N_{e^-L}}$ Machin Parameters \*Ecm=250GeV \*luminosity : 1[ab<sup>-1</sup>] positron polarization  $\frac{N_{e^+R} - N_{e^+L}}{N_{e^+R} + N_{e^+L}}$ \*electron polarization :0.8 \*positron polarization :-0.3 Model Parameters \*Spin of DM : 1/2  $N_{e^{-}R.L}$  右巻き、左巻き電子の数 \*DM mass : 50GeV  $N_{e^{-}R,L}$  右巻き、左巻き陽電子の数 \*Cf : 6.86  $*\Lambda : 1000$ Event Generation \* luminosity1 [ $ab^{-1}$ ] のバックグランドイベントの生成. \* シグナル生成断面積を 15fbと仮定.

| <b>Event Selection</b> | eeZ  | evW | ννΖ | WW   | ZZ  |
|------------------------|------|-----|-----|------|-----|
| Cross Section [fb]     | 3992 | 684 | 5   | 2783 | 982 |

表1. バックグランド生成断面積



■シグナル事象

 $e^+e^- \rightarrow ZH \rightarrow qq DM DM$ .



図1.シグナル

### ■バックグランド事象

バックグランド事象:その終状態がシグナル事象の終状態と類似した事象
 (A) ZZ (B) vvZ → vvqq (C) WW (D) evW→evqq (E) eeZ →eeqq



## 物理事象の選択 Isolated Lepton Cut



図3.Isolated lepton の数

## 物理事象の選択 Isolated Lepton Cut



図3.Isolated lepton の数

8

# 物理事象の選択 Forward Electron Veto



図4.Forward electrons の数

# 物理事象の選択 Forward Electron Veto



図4.Forward electrons の数

10





図5.Zボソン質量分布

11

物理事象の選択 Z mass cut



図5.Zボソン質量分布

#### Likelihood Function Background ZZ background evW background vvZ background WW background eeZ background zmass\_pdf COSZ cosz\_pdf Entries 290302 cosqq\_pdf cosqq Entries 290302 Entries 290302 89.61 Moan Mean 0.610 ①: Likelihood function の定義 ・Likelihood function のパラメータは次のZボソンの運動学変数を使用した。 1. Zボソンの質量 Z<sub>mass</sub> 2. Zボソンの散乱角度分布 cosθ<sub>7</sub>

 $\overline{\cos\theta_z(F\cos\theta_z)}_{\cos\theta_z < 0.955}$ 



zmass

0.015

Zmass(Fzmass)

0.9

 $\cos\theta_{qq}(F\cos\theta_{qq})$ 

Costheta

## Likelihood Function



### Likelihood Ratio

### ②:Likelihood ratioの定義

Likelihood ratio を次のように定義した。

Likelihood Ratio = 
$$\frac{L_{sig}}{L_{sig} + L_{bg}}$$



☑ 12. likelihood ratio distribution

## Likelihood Ratio Cut

Significanceを最大にするためのlikelihood ratioの最適化

→best likelihood ratio は0.3である



図13. signal efficiency vs bg efficiency

| 表2.s | signal, | background | efficiency |
|------|---------|------------|------------|
|------|---------|------------|------------|



⊠14. significance

|  | 表3. | signif | ïcance | vs 1 | ikel | lihood | ratio |
|--|-----|--------|--------|------|------|--------|-------|
|--|-----|--------|--------|------|------|--------|-------|

|     | -          | •      |     |            |        |              |
|-----|------------|--------|-----|------------|--------|--------------|
| R=> | background | signal | R=> | background | signal | significance |
| 0   | 1.00       | 1.00   | 0   | 90134      | 9193   | 29.17        |
| 0.1 | 0.90       | 0.98   | 0.1 | 80837      | 9024   | 30.10        |
| 0.2 | 0.80       | 0.95   | 0.2 | 72417      | 8720   | 30.61        |
| 0.3 | 0.70       | 0.90   | 0.3 | 63318      | 8268   | 30.90        |
| 0.4 | 0.60       | 0.83   | 0.4 | 53805      | 7648   | 30.85        |
| 0.5 | 0.50       | 0.75   | 0.5 | 45006      | 6915   | 30.35        |
| 0.6 | 0.39       | 0.63   | 0.6 | 34785      | 5832   | 28.94        |
| 0.7 | 0.24       | 0.45   | 0.7 | 21605      | 4134   | 25.77        |





### Upper limits

① : シグナル断面積のILC実験による測定限界、Upper limit の見積もり



### ②: Upper limit を最小にするためのlikelihood ratio の最適化について

→Likelihood ratio が 0.0、0.1、0.2、0.3、0.4、0.5、0.6、0.7以下のイベントをカット



### Result

• シグナル断面積を0[fb]とし、見積もったupper limit を表5に示した。

→upper limit を最小にするbest likelihood ratio cut は0.4

| likelihood ratio | N <sub>sig</sub> (C.L 95%) | efficiency | upper limit [fb] |
|------------------|----------------------------|------------|------------------|
| 0                | 555                        | 0.687      | 0.808            |
| 0.1              | 535                        | 0.687      | 0.779            |
| 0.2              | 525                        | 0.678      | 0.774            |
| 0.3              | 505                        | 0.654      | 0.772            |
| 0.4              | 435                        | 0.591      | 0.736            |
| 0.5              | 385                        | 0.476      | 0.809            |
| 0.6              | 245                        | 0.269      | 0.911            |
| 0.7              | 27                         | 0.006      | 4.500            |

表5. upper limit

 見積もられたシグナル断面積のupper limit からHiggs → DM DMのBranting ratio の upper limit を見積もった。

$$BR(H \to DM, DM) = \frac{\sigma_{DD}^{C.L.95\%}}{\sigma(e^+e^- \to ZH)} = 3.1 \times 10^{-3}$$

# Summary and Plan

### Summary

- ILC実験によるヒッグス・ポータル模型での暗黒物質の検出感度を見積もった。
  →シグナル生成断面積のupper limit:0.736[fb]
- Brancing ratio, BR(H $\rightarrow$ DM,DM) Ø upper limit :  $BR(H \rightarrow DM, DM) = 3.1 \times 10^{-3}$

### Plan

- 1. H→Z Z\*→4v バックグランドを考慮しシグナル断面積のupper limit を見積もる
- ZH→ vv (Z\* vv),vv (vv Z)バックグランドを考慮してシグナル断面積のupper limit を 見積もる
- 3. DM質量を変えて、シグナル断面積のupper limit を見積もる
- 4. ヒッグス質量を125GeVにして解析する

# Back up

- Optimization of the likelihood ratio to minimize the upper limit of signal cross section.
  so, When likelihood ratio cut is smaller than 0.0,0.1,0.2,0.3,0.4,0.5,0.6 or 0.7, I showed distributions of N<sub>sig</sub> parameter and pull distribution. →I found that the mode of distribution is near 0.
  - Likelihood ratio > 0.0



Background likelihood distributon







### Background likelihood distributon



Distribution of parameter  $N_{sig}$ 







Background likelihood distributon





Signal likelihood distributon





Background likelihood distributon





Signal likelihood distributon



• Likelihood ratio > 0.6



### Background likelihood distributon





Signal likelihood distributon



pull distribution

