

$B \rightarrow X_s \gamma の崩壊分岐比 と非対称度の測定$

齋藤 智之 (東北大学)

2012/11/06 B workshop @ 花巻

目次

1、イントロダクション $\cdot b \rightarrow s \gamma$ 遷移とは ・解析手法 2、MCによる解析 ・シグナル再構成 ・バックグランドの除去

・統計エラーの見積もり

B→X_sγの解析 齋藤智之(東北大学) 2012/11/06 B workshop @ 花巻

2

イントロダクション

 $b \rightarrow s \gamma$ 遷移 標準理論: ツリーレベル禁止(Flavor Changing Neutral Current) 1ループのペンギンダイアグラムで起こる ループを回る重い新粒子($H^{\pm}, \chi^{\pm}, \tilde{t}$ 等)へ の感度大 膨大な γ の背景事象 \rightarrow LHCbでは難しい測定 SS Sフレーバを変える荷電カレント 標準理論で禁止 新物理が予言する を介した高次効果で生じる 粒子の効果

崩壊分岐比と非対称度を測定し標準理論からのずれを検証

崩壞分岐比測定手法

 $B \rightarrow X_{s\gamma}$ の解析 齋藤智之 (東北大学)

2012/11/06 B workshop @ 花巻

崩壞分岐比測定手法

Inclusive崩壞測定

Xsが何に崩壊するか(ハドロン化)がエラー大きい! → 対策の違いで2つの解析手法

Full-inclusive 再構成 (γのエネルギーのみ測定) ・理論の不定性非常に小さい ・バックグランドの除去大変

・検出器、バックグランドの精密な 理解必須 W S エラー大きい ところは見ない! B b s

Inclusive崩壞測定 Xsが何に崩壊するか(ハドロン化)がエラー大きい! → 対策の違いで2つの解析手法 **Full**-inclusive 再構成 エラー大きい ところは見ない! (γのエネルギーのみ測定) ・理論の不定性非常に小さい ・バックグランドの除去大変 ・検出器、バックグランドの精密な 理解必須 **Semi**-inclusive再構成 (X.を複数の崩壊モードから再構成) ・理論の不定性小さい B ・実際にBを再構成しているので バックグランド抑制可 どんなモードも全部取る! = Xsが何に崩壊してようが関係ない

 $B \rightarrow X_{x} \gamma の解析$

齋藤智之 (東北大学)

2012/11/06 B workshop @ 花巻

 $B \rightarrow X_{s} \gamma$ 崩壊分岐比の現状

HFAG 2012: BR= $(3.43\pm0.22) \times 10^{-4}$ (*E_γ* > 1.6 GeV) SM(NNLO): BR= $(3.15\pm0.23) \times 10^{-4}$ (*E_γ* > 1.6 GeV) Semi-Inclusive手法でBR($B \rightarrow X_s \gamma$)を測定する *B*→*X_s* の解析 齋藤智之(東北大学) 2012/11/06 B workshop @ 花巻

Semi-inclusive法による シグナル再構成

X、の終状態

● X_s にどんな終状態が含まれているか? → MC(Pythia)でチェック

π⁰は1つまで 割合(%) X_sの質量 (generator level) Kπ 11.7 h_Xsmass_13 24.7 $K2\pi$ Entries 865577 Mean 1.934 30000 15.3 $K3\pi$ RMS 0.5243 Baryon 7.2 $K4\pi$ 25000 Etap Omega $K5\pi$ 2.7 3Pi0 20000 2Pi0 **Κ6**π 0.9 - 3K - KEta 15000 4.3 K6Pi Kŋ – K5Pi 10000 K4Pi 3K 3.5 K3Pi $2\pi^0$ K2Pi 13.7 5000 K1Pi Other $3\pi^0$ 4.8 0.5 1 1.5 2 2.5 3 3.5 4.5 4 1.1 ω n' 0.71.1

齋藤智之 (東北大学)

できれば全て再構成したい! (=ハドロン化の系統誤差最小) しかし…

- ・粒子数多モード(K5π等)
- ・π⁰やηを複数含むモード

11

→ efficiency低いかつ
 BGが多くて測定困難

どこまで再構成できるかはやってみなければ わからない

 $B \rightarrow X_{s} \gamma の解析$

8.3

Baryon Other

2012/11/06 B workshop @ 花巻

Semi-Inclusive手法のポイント

Semi-Inclusive手法のポイント

Key Point:いかに系統誤差を抑えるかが勝負 *X*のハドロン化の誤差

● 再構成していないモードの割合の誤差

トトより多くの X_sの終状態を再構成することが重要
 トトより高い X_sの質量領域を理解が重要

Semi-inclusive法によるイベント再構成

 たくさんの $B \rightarrow X_{s\gamma}$ の終状態を再構成
 現在までに35の終状態を再構成 (以前のBelleの解析から19モード追加)

 $X_{s} \rightarrow K\pi, K_{s}\pi, K\pi^{0}, K_{s}\pi^{0}$ $(K\pi)$ $K\pi\pi, K_{s}\pi\pi, K\pi\pi^{0}, K_{s}\pi\pi^{0}$ $(K2\pi)$ Κπππ, Κ_sπππ, Κπππ⁰, Κ_sπππ⁰ $(K3\pi)$ Κππππ, Κ_sππππ, Κππππ⁰, Κ_sππππ⁰ $(K4\pi)$ KKK, KKK_s, KK_s, KKK π , KKK_s, KKK π , KKK_s, $(3K, 3K\pi)$ $KKK\pi^0$, $KKK_s\pi^0$, $KK_sK_s\pi$, $KK_sK_s\pi^0$ $K\eta, K_s\eta, K\eta\pi, K_s\eta\pi, K\eta2\pi, K_s\eta2\pi$ $(K\eta, K\eta\pi, K\eta 2\pi)$ $K\pi^0\pi^0, K_s\pi^0\pi^0, K\pi\pi^0\pi^0, K_s\pi\pi^0\pi^0$ $(K2\pi^{0}, K\pi^{2}\pi^{0})$

 X_s の終状態の73%をカバー ($K^*\gamma$ 含む)

シグナル領域

B→X_x の解析 齋藤智之 (東北大学) 2012/11/06 B workshop @ 花巻

15

本手法で以前の問題点を改善かつ同等の結果が得られた。

B→X, *y*の解析 齋藤智之 (東北大学) 2012/11/06 B workshop @ 花巻

バックグランド

● バックグランドは2種類

- ▶ qq BG: 軽いクォーク(udcs)のジェットイベント
 - ・ 最大の BG
 - ・イベントの形の違いに注目して除去
- ▶ Peaking BG: シグナル領域にピークをもつイベント ・最後に M_{bc}をフィットする際にシグナルと間違える →系統誤差となる
 - ・ Bからの崩壊イベント($B \rightarrow D \pi^{0}$ 、 $B \rightarrow D \rho$ 等)

Peaking BG抑制: π^0/η Veto

Peaking BG抑制: D veto 1/2

● DからのBGがたくさん混入。 ▶主に $B \rightarrow D\rho$ (BRが10³倍以上)

・幅の広い ρ の質量でのvetoは困難

D vetoの方法

- *X* を再構成した粒子の組み合わせで 無理矢理 Dを組み
- ② D の質量に最も近い組み合わせを選ぶ。
 ③ D の質量でveto

B→X_sγの解析 齋藤智之(東北大学) 2012/11/06 B workshop @ 花巻

20

M_{Xs}> 2.0 GeVで1830-1900 MeV(7_o) をveto
 ▶ シグナルを97%保持しつつ、 D からのBGを23%に低減
 ▶ M_{bc}のピークをほぼ除去できた

qq バックグランドの抑制

● 最も大きなBG源は軽いクォークのジェット(qq BG) ▶ イベントの形を利用して抑制

"イベント形状の変数(Sphericity, Thrust等)11個
 +フレーバタグの変数 = 合計12変数"
 を使ってニューラルネットにより最適なSig-BG分離変数を計算

 \square

qq バックグランドの抑制

● ニューラルネットの出力を使ってqq BGを抑制

Significanceでカットを最適化(本来は系統誤差で最適化すべき) → シグナルを59%保持し、qq BGを3%に低減

 M_{bc} のフィット

● M_{bc}をフィットしてシグナル数を得る。

▶ 統計エラー1.6%程度(最終結果ではない)

まとめと予定

Belle実験のデータを用いて $B \rightarrow X_{s\gamma}$ の測定を行っている。

- まとめ
 - ► $B \rightarrow X_{s^{\gamma}}$ の崩壊分岐比と非対称度は新物理に感度高い
 - ▶ Semi-inclusive再構成法を用いて測定
 - ▶ 35のX_sの終状態を再構成
 - ► ΔE のLikelihoodを用いたBの最適候補選択
 - ▶ Peaking BG とqq BGの抑制
 - M_{bc} のfitをしてイベント数を評価

) 予定

- ▶ 再構成するシグナルモードの再考
- ▶ 解析の最適化

Back up

*B→X_sγの*解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学

26

Belle 実験

陽電子リング(3.5GeV)

Belle 測定器

加速空洞

陽電子源

27

- 目的:B中間子を大量に生成し、 崩壊過程を観測して標準理論 を検証
- ▶ 1周3km、地下11mのトンネル
- ▶ 電子 8GeV 陽電子 3.5GeV 電子リング(8 GeV)
- ▶ 1600×10⁵ (回/s)交差
 →1秒当たり20のBBペアを生成
- ▶ 衝突点でビームは~100µm×1µmに収束
 ▶ 最終積分ルミノシティ:~1000 fb⁻¹

現在アップグレードに向けて改良中。2015年開始予定。

B→X_sγの解析 齋藤智之(東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学

Belle 検出器

高い運動量測定精度&優れた粒子識別を持つ汎用大型検出器

*B→X_s*γの解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学

28

 $B \rightarrow X_s \gamma$ 崩壞分岐比

Mode	B	E_{\min}	$\mathcal{B}(E_{\gamma} > E_{\min})$	$\mathcal{B}^{\mathrm{cnv}}(E_{\gamma} > 1.6)$
CLEO Inc. [2]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$	$328\pm44\pm28\pm6$
Belle Semi.[3]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	_	$369\pm58\pm46\pm60$
Belle Inc.[4]	—	1.7	$345\pm15\pm40$	$350\pm15\pm41\pm1$
BABAR Semi.[5]	_	1.9	$329 \pm 19 \pm 48$	$352\pm20\pm51\pm4$
BABAR Inc. [6]	—	1.8	$321\pm15\pm29\pm8$	$332\pm16\pm31\pm2$
BABAR Full [7]	$391 \pm 91 \pm 64$	1.9	$366\pm85\pm60$	$390\pm91\pm64\pm4$
Average				$343\pm21\pm7$

*B→X_sγの*解析 齋藤智之(東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西学院大学 30

 $B \rightarrow X_{s} \gamma$ 崩壞分岐比

Charged Higgsへの制限

B→X_sγの解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西学院大学 31

b→sy inclusive崩壞分岐比測定

$$\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 \left| V_{ts}^* V_{tb} \right|^2}{32\pi^3} \left| \frac{C_7^{\text{eff}}}{7} \right|^2$$

Effective Hamiltonian of inclusive radiative B decay $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$

 C_i : Wilson coefficient

 $O_{1,2}$: current current operator

 O_{3-6} : QCD penguin operator

 $O_{7.8}$: electro- and chromo operator

 $O_{9,10}$: semi-leptonic operator

 $B \rightarrow X_{s} \gamma$ の非対称度

Direct CPの破れ : BとBの振幅幅の違い

$$A_{CP} = \frac{\Gamma(B \to X_s \gamma) - \overline{\Gamma}(\overline{B} \to X_s \gamma)}{\Gamma(B \to X_s \gamma) + \overline{\Gamma}(\overline{B} \to X_s \gamma)}$$

鄔滕省と(鬼北人子)

 $B \rightarrow X_{\gamma} O$ 所 所

- 比なので理論的・実験的誤差 がキャンセル(exclusiveでも 新物理に感度あり)
- ▶ 標準理論では~0.5%の破れ

弗0/凹牛伙入会 @ 渕四大字

33

アイソスピンの破れ : B⁰とB⁺の崩壊幅の違い

$$\Delta_{0+} = \frac{\Gamma(B^+ \to X_s \gamma) - \Gamma(B^0 \to X_s \gamma)}{\Gamma(B^+ \to X_s \gamma) + \Gamma(B^0 \to X_s \gamma)} \quad \triangleright 標準理論では+5~10\%$$
の

A_{CP} 0	$0.002 \pm 0.050 \pm 0.030 \ (140 \ \text{fb}^{-1})$	$-0.011\pm0.030\pm0.014$ (350fb ⁻¹)
\varDelta_{0+}	未測定	$-0.006 \pm 0.058 \pm 0.009 \pm 0.024$ (350fb ⁻¹)

日本物理字会

2012/3/24

シクナルのC (
$$B \rightarrow X_{s'}$$
の
MCでB→ $X_{s'}$ のイベントをどのように作るか?

1.15 GeV以下はほぼ K^* 共鳴イベント
1.15 GeV以上の X_s の質量分布の計算は理解不+分

3. 次 は Pythia でハドロン化

1.15 GeV以下は $K^*\gamma$ のイベント
(resonance)
以上は inclusive $b \rightarrow s\gamma$

 $X_{s'}: K^*\gamma = 32 \times 10^{-5}: 4 \times 10^{-5}$

*B→X_sγの*解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学 3

粒子選別

BGの多い*π⁰, η*が 厳しめのカット

Bからの γ 選別

- 33° < θ_γ <128°
 (バレル領域)
- $1.8 < E_{\gamma}^* < 3.4 \ GeV$
- ・シャワーの形
- ●*K*[±], π[±] 選別
 - ・衝突点付近からきている
 - ・粒子識別
 - $p^{CM} > 100 MeV$

● K_s 選別

- ・ニューラルネット選別
- $488 < M_{Ks} < 508 MeV$

● 飛 選別

- $E_{\gamma} > 50 \, MeV$
- $123 < M_{\pi 0} < 143 \text{ MeV}$
- $\cos\theta_{\gamma\gamma} > 0.4$
- $p^{CM} > 100 MeV$
- $\Box \left(\begin{array}{c} \bullet p^{CM} \\ p^{CM} \\ p^{CM} \\ fast \end{array} > 0.40 \quad GeV \right) (2\pi^{0} \Xi F) \\ (2\pi^{0} F) \\ (2\pi^{$
- η (→γγ)選別
 - $E_{\gamma} > 50 \text{ MeV}$
 - $515 < M_{\eta} < 570 \ GeV$
 - $|\cos\theta_{\rm hel}| < 0.8$
 - p^{CM} >0.5 GeV

"高エネルギー γ"と" $K^{\pm}, \pi^{\pm}, K_{s}, \pi^{0}, \eta$ からの X_{s} "を組んでBを再構成 $B \rightarrow X_{s\gamma}$ の解析 齋藤智之(東北大学) 2012/11/06 B workshop @ 花巻 35

X_s mass vs γ energy

Semi-inclusive reconstruction of $B \rightarrow X_s \gamma$ Tomoyuki Saito (Tohoku Univ.) 2012/03/12 BGM @ KEK

X_sの崩壊

X_sはハドロン化 → どんな崩壊モードにいっているかチェック

B→X_sγの解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学

37

find Ks

K_sを選ぶための4つの要求

- ▶ π⁺とπ⁻の飛跡が衝突点付近からきていない(dr)
- ► K_sの運動量の向きが衝突点方向(dφ)
- ▶ π⁺とπ⁻の飛跡が共通の1点(=K_sの崩壊点)からきている (z_dist)
- ► K_sがある程度走っている(f)

Momentum(GeV)	dr(cm)	$d\phi$ (rad)	z_dist(cm)	fl(cm)
< 0.5	> 0.05	< 0.3	< 0.8	-
0.5-1.5	> 0.03	< O.1	< 1.8	> 0.08
1.5 <	> 0.02	< 0.03	< 2.4	>0.22

*B→X_sγの*解析 齋藤智之 (東北大学) 2012/3/24 日本物理学会 第67回年次大会 @ 関西大学

38

シグナル

	Κπ	Κ2π	Κ3π	Κ4π	3K	3Κπ	Κη	Κηπ	Κη2π	$K2\pi^0$	$K\pi 2\pi^0$	TOTAL
Trada 1	10344	7352	3967	1898	302	332	304	316	221	387	725	26148
Total	12.5%	9.4%	8.2%	8.5%	11.3%	10.1%	8.5%	11.7%	14.5%	5.9%	6.9%	10.0%
TRUE	9373	4530	1052	189	196	81	202	96	22	107	74	15922
	11.3%	5.8%	2.2%	0.8%	7.4%	2.5%	5.7%	3.6%	1.4%	1.6%	0.7%	6.1%
	601	2069	2174	1420	99	229	95	206	183	241	585	7902
cross-reeu	5.8%	28.1%	54.8%	74.8%	32.8%	68.9%	31.3%	65.3%	82.6%	62.2%	80.7%	30.2%
self cross-	370	753	741	289	7	22	7	13	16	40	66	2324
feed	3.6%	10.2%	18.7%	15.2%	2.2%	6.7%	2.4%	4.2%	7.4%	10.3%	9.1%	8.9%
Purity	90.6%	61.6%	26.5%	10.0%	65.0%	24.4%	66.3%	30.4%	9.9%	27.5%	10.3%	60.9%

齋藤智之 (東北大学)

シグナル

Xs mass(GeV)	0.6- 0.7	0.7-0.8	0.8-0.9	0.9-1.0	1.0-1.1	1.1-1.2	1.2-1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0	2.0-2.1	2.1-2.2	2.2-2.3	2.3-2.4	2.4-2.5	2.5-2.6	TOTAL
Gen	131	1823	32058	21811	2523	11580	24534	27214	29716	31425	32186	32010	30603	28955	26642	23795	21170	18195	15252	12629	424252
TRUE	14	164	2913	2089	247	717	1332	1291	1245	1108	1039	859	732	625	457	356	262	197	146	107	15900
Reco	27	226	3033	2235	443	1017	1737	1796	1884	1867	1884	1778	1682	1626	1296	1075	882	717	532	412	26149
Eff(True/Gen)	0.11	0.09	0.09	0.10	0.10	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.04
Eff(Reco/Gen)	0.21	0.12	0.09	0.10	0.18	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.06