B⁰→D^{*}π崩壊事象を用いた CP対称性破れの測定

板垣憲之輔(東北大学)

住澤一高,石川明正,山本均, and the Belle collaboration

2013/3/27

- ・導入
- B⁰→D^{*}πの再構成
- Δt
- 寿命、mixing parameter のfit
- S[±](CPの破れパラメータ) fit
- 系統誤差
- ・まとめ

3

 $\phi_3 \sim -\arg(V_{ub})$

- Belle 実験の全データ(772x10⁶ BB)を用いた測定結果を報告する
 - 同じ手法で386 x 10⁶ BB を用いた結果 PRD73(2006)092003 $S^+ = 0.050 \pm 0.029 \pm 0.014$, $S^- = 0.028 \pm 0.028 \pm 0.014$

B⁰→D^{*}πの再構成

- ・ 以下の崩壊を再構成し、信号事象を得た $B^{0} \rightarrow D^{^{*\mp}} \pi^{^{\pm}}$ $D^{^{*+}} \rightarrow D^{0} \pi^{^{+}}$ $D^{0} \rightarrow K^{^{-}} \pi^{^{+}}, K^{^{-}} \pi^{^{+}} \pi^{^{-}}, K^{^{-}} \pi^{^{+}} \pi^{^{0}}, K_{s} \pi^{^{+}} \pi^{^{-}}$ $D^{^{*+}} \rightarrow D^{^{+}} \pi^{^{0}}$ $D^{^{+}} \rightarrow K^{^{-}} \pi^{^{+}} \pi^{^{+}}$ 荷電共役も同様に再構成
- 事象選別

PID(K,π)	138 MeV < M _{D*} -M _{D0} <143 MeV	
$0.118 \text{ GeV} < M_{\pi 0} < 0.150 \text{ GeV}$	143 MeV < M _{D*} –M _{D+} <148 MeV	
$\gamma_{\pi 0}$ energy > 0.04 GeV	-0.15 GeV< ΔE <0.5 GeV	$\Delta E = E_B - E_{Beam}$
π ⁰ を含むD ⁰ 質量 ±30MeV (PDG)	5.2 GeV < M _{bc} <5.3 GeV	$M_{bc} = \sqrt{E_{Beam}^2 - P_B^2}$
π ⁰ を含まないD ⁰ 質量 ±20MeV		•
$M_{p+} \pm 20 MeV (PDG)$		

• Belle 全データを再構成した

B⁰→D^{*}πの再構成

• 信号領域

-0.045 GeV < ΔE < 0.045 GeV, 5.27 GeV < Mbc < 5.29 GeV

信号領域で 78,065 個のB候補を再構成した

Δt

- Δt から S[±](CPの破れパラメータ)を求める
- <u>∆t</u>:B_{tag}とB_{sig}の崩壊時間差
 - B_{sig} : $B^0 \rightarrow D^* \pi$
 - B_{tag}: flavor 同定に使用
 - Belle 標準
 - 崩壊時間:崩壊点から求める

$$\Delta t \approx \left(z_{sig} - z_{tag} \right) / \beta \gamma c$$

$\Delta t PDF$

信号事象の Δt PDF

$$P\left(B_{tag} = \overline{B}^{0}; B_{sig} \to D^{*\mp} \pi^{\pm}\right) = \left(1 - w_{\overline{B}^{0}}\right) \times P\left(B^{0} \to D^{*\mp} \pi^{\pm}\right) + w_{B^{0}} \times P\left(\overline{B}^{0} \to D^{*\mp} \pi^{\pm}\right)$$

$$P\left(B_{tag} = B^{0}; B_{sig} \to D^{*\pm}\pi^{\mp}\right) = \left(1 - w_{B^{0}}\right) \times P\left(\overline{B}^{0} \to D^{*\pm}\pi^{\mp}\right) + w_{\overline{B}^{0}} \times P\left(B^{0} \to D^{*\pm}\pi^{\mp}\right)$$

w : flavor tag 精度

$$P(\overline{B}^{0} \to D^{*\pm} \pi^{\mp}) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{8\tau_{B^{0}}} \left[1 \pm C\cos(\Delta m\Delta t) + S^{\pm}\sin(\Delta m\Delta t)\right]$$

$$P(B^{0} \to D^{*\mp} \pi^{\pm}) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{8\tau_{B^{0}}} \left[1 \pm C\cos(\Delta m\Delta t) - S^{\mp}\sin(\Delta m\Delta t)\right]$$

• S[±] をfloat して∆t 分布をfit する

∆t PDF

- $\Delta t \text{ PDF}$ $P(\Delta t) = f_{sig}P_{sig} + (1 - f_{sig}) f_{B^0\overline{B}^0}P_{B^0\overline{B}^0} + f_{B^+B^-}P_{B^+B^-} + (1 - f_{B^0\overline{B}^0} - f_{B^+B^-})P_{con}$ • $P_{B^0\overline{B}^0}, P_{B^+B^-}$: MC をfit して決定 $B^0 \to D^{*\mp} \pi^{\pm}$
- *P_{con}*: 実データの信号領域の外をfitして決定
- *f*:実データの∆Eをfitして決定

- 下位崩壊、flavor tag の精度ごと

io 寿命、mixing parameter のfit · B⁰の寿命、B⁰-B⁰bar 混合のパラメータをfit した - B⁰とB⁰bar を足し合わせ - S[±]を相殺 PDF_{sig} = $\frac{e^{-|\Delta t|}}{4\tau_{B^0}} (1 \pm C(1 - w_{B^0} - w_{\overline{B}^0}) \cos(\Delta m \Delta t))$

S[±]のfit 結果 S[±]をfit $\frac{tag\overline{B}^{0} - tagB^{0}}{tag\overline{B}^{0} + tagB^{0}} \propto -(S^{+} + S^{-})(1 - w_{\pi^{0}} - w_{\pi^{0}})sin(\Delta m\Delta t)$ Flavor tag の精度が良いイベントのみの plot

Systematic error

 各項目について、その値を変えてS[±]をfitし、標準のfit 結果との差 をsystematic error としている

source	Previous (ΔS ⁺ =ΔS ⁻)	ΔS ⁺	ΔS-
∆t resolution	0.005	+0.010 -0.010	+0.0010 -0.010
background Δt shape	0.0001	+0.0001 -0.0001	+0.0001 -0.0001
Signal fraction	0.002	+0.0010 -0.0005	+0.0007 -0.0007
wrong tag fraction	0.002	+0.0006 -0.0005	+0.0005 -0.0004
physics parameters (τ , Δm)	0.001	+0.0001 -0.0001	+0.0007 -0.0005
tag-side interference	0.005	+0.005 -0.005	+0.005 -0.006
Fit bias	0.010		
Vertexing	0.004	+0.0008 -0.0001	+0.0004 -0.0005
combined	0.014	+0.011 -0.011	+0.011-0.011

前回の結果で最も大きかったfit bias はtag-side interference の誤差
 に含まれることが分かったため、統合した

まとめ

Belle 実験で得られた全データを用いて、B⁰→D^{*}π崩壊事象に現れるCP対称性破れを測定した

$$S^{+} = 0.000 \pm 0.017(stat) \pm 0.011(sys)$$
$$S^{-} = 0.057 \pm 0.017(stat) \pm 0.011(sys)$$

この結果を φ₃ の制限に使うことができる

以前の結果との比較

• 前回の結果と今回の結果を比較した. 前回の結果 $S^+ = 0.050 \pm 0.029 \pm 0.014$

 $S^{-} = 0.028 \pm 0.028 \pm 0.014$

 $S^+ = 0.000 \pm 0.017(stat)$ $S^- = 0.057 \pm 0.017(stat)$

- 前回と同じ統計量での結果(386 x 10⁶ BB)

 $S^+ = 0.033 \pm 0.026$

- $S^- = 0.044 \pm 0.026$
- 前回の測定以後のデータ

 $S^+ = -0.027 \pm 0.024$

 $S^- = 0.067 \pm 0.023$

- 前回の測定以後のデータがS+を小さくしている
- 無矛盾

• S[±] をfit

S⁻=0.057±0.017(統計)

Linearity check of CP fit

- 32 stream signal MC (evtgen, gsim) were used for fit.
- S⁺ gradient: 1.00 \pm 0.01, y-intercept: 0.0060 ± 0.0007 (8.6 σ)
- S⁻ gradient: 1.00 \pm 0.01, y-intercept :-0.0058 \pm 0.0007 (8.3 σ)
- There are some bias.(ΔS)

• We find that it comes from the position of tag-side vertex.

The difference arising from the result of flavor tag

- Difference between generated tag-side vertex and reconstructed tagside vertex are not same between wrong flavor tag events and true flavor tag events.
- Their mean differ.

Shift of tag-side vertex of wrong tag events

Linearity check of CP fit

- Tag side vertex in wrong tag part were shifted -4.35 μm.
- S⁺ gradient: 1.00 \pm 0.01, y-intercept: -0.0004 \pm 0.0007 (0.6 σ)
- S⁻ gradient: 1.00 \pm 0.01, y-intercept : $0.0005 \pm 0.0007 (0.7 \sigma)$
- There are no bias.
- The cause of bias is the shift of the tag-side vertex of wrong tag events.

Tag side interference

• Measured S^{\pm} include the interference in the tag side decay.

$$S^{+}_{measured, favored} = S^{+} + S^{-}_{tag}$$

$$S^{+}_{measured, suppressed} = S^{+} - S^{+}_{tag}$$

$$S^{-}_{measured, favored} = S^{-} + S^{+}_{tag}$$

$$S^{-}_{measured, suppressed} = S^{-} - S^{-}_{tag}$$

Cancel of ΔS

$$S_{measured, favored}^{+} = S^{+} + S_{tag}^{-} + \Delta S$$

$$S_{tag, measured}^{-} = S_{tag}^{-} + \Delta S$$
then $S_{measured, favored}^{+} = S^{+} + S_{tag}^{-} + \Delta S = S^{+} + S_{tag, measured}^{-}$
also
$$S_{measure, sup}^{+} = S^{+} - S_{tag}^{+} + \Delta S = S^{+} + S_{tag, measure}^{+}$$

$$S_{measure, fav}^{-} = S^{-} + S_{tag}^{+} - \Delta S = S^{-} + S_{tag, measure}^{+}$$

$$S_{measure, sup}^{-} = S^{-} - S_{tag}^{-} - \Delta S = S^{-} - S_{tag, measure}^{-}$$

$$S_{tag, measured}^{-} \text{ includes } \Delta S \text{ and cancels } \Delta S \text{ in } S_{measured}^{-}$$
Dominant error in previous analysis is fit bias

In this analysis, it can be combined with TSI error and decreased.

Systematic error

- Fit condition is changed and take difference from the main result as a systematic error
- Source of systematic error
 - Δt resolution, background Δt shape, Signal fraction, wrong tag fraction, physics parameters (τ , Δm), tag-side interference, Vertexing
- Vertexing
 - Vertex fit quality: $h < 50 \rightarrow 20, 100$
 - Precise vertex positioning: $\sigma_z < 200 \mu m$ for multi-track vertex and $\sigma_z < 500 \mu m$ for single-track vertex. \rightarrow no cut
 - Realistic lifetime: $|\Delta t| < 70 \text{ ps} \rightarrow 40 \text{ ps}, 100 \text{ ps}$
 - Scale error
- Other

- Vary $\pm 1 \sigma$

Signal/background fraction

- Signal/background fraction were obtained from ΔE fit.
 - each sub-decay, rbin, SVD
 - Fit region : -0.15 < ΔE < 0.5, 5.27 GeV < M_{bc} < 5.29 GeV
- Fitting procedure
- 1. Function shape without signal and continuum BG were fixed.
 - by fitting each background taken from generic MC
- 2. Signal shape were fixed each sub-decay.
 - by fitting all events which are not divided for every rbin
 - Float : signal shape, continuum BG shape, signal fraction, continuum fraction
- 3. Obtain signal/background fraction
 - by fitting each rbin events.
 - Float : continuum BG shape, signal fraction, continuum fraction

ΔE fit of generic MC : $D^0 \rightarrow K\pi$

SVD2

• ΔE fit result of $K\pi$ (generic MC, SVD2)

27

ΔE fit of generic MC : $D^0 \rightarrow K\pi$

SVD2

Signal fraction in signal region for each rbin were obtained.

ΔE fit : $K\pi$ real data

ΔE fit : $K\pi\pi\pi$ real data

ΔE fit : $K\pi\pi0$ real data

ΔE fit : Ks $\pi\pi$ real data

ΔE fit : $K\pi\pi$ real data

$\Delta t \, fit \, for \, Background$

• To get BG shape, Δt PDF for each BG was fitted.

Neutral B BG PDF

$$P_{B^{0}BG}(\Delta t, q_{tag}, q_{cp}) = \frac{1}{8\tau_{B^{0}BG}} e^{-|\Delta t|/\tau_{B^{0}BG}} \left\{ 1 - q_{tag}q_{cp}(1 - 2w_{rbin})\cos(\Delta m\Delta t) \right\}$$
Charged B BG PDF

$$P_{chg}(\Delta t, q_{tag}, q_{cp}) = \frac{1}{8\tau_{chgB}} e^{-|\Delta t|/\tau_{chgB}} \left\{ 1 - q_{tag}q_{cp}(1 - 2w_{rbin}) \right\}$$
Continuum BG PDF

$$P_{con}(\Delta t) = f_{\delta} \cdot \delta(\Delta t - \mu_{\delta}) + (1 - f_{\delta}) \cdot \exp\left(-\frac{|\Delta t - \mu_{\tau}|}{\tau_{con}}\right)$$

Charged B background SVD1

Charged B background SVD2

neutral B background SVD1

•

neutral B background SVD2

Continuum background SVD1

• Fit results

Continuum background SVD2

• Fit results

