FPCCD崩壊点検出器専用の トラックファインダー開発状況

ir

İİL

東北大学 修士2年 森 達哉

Main Linac

1. FPCCDの紹介

2. クラスター形状によるBGプリカット開発状況

31 km

3. FPCCD専用トラックファインダー開発状況

Framework: ILCSoft v01-16 (http://ilcsoft.desy.de/portal)

ILC Scheme | @ www.form-one.de

崩壊点検出器

ILCの大きな目的のひとつ: c、bクォークとHiggsとの結合定数の精密測定(Belle、LHCでは困難)

Fine Pixel CCD Vertex Detector (FPCCD)

FPCCDの特徴

ピクセルの大きさ : 5 × 5 µm² 厚み: 50 µm (その内15 µmは有感層) ピクセル数 : ~ 10億個

高分解能 & 低占有率

過去の性能評価の結果

レイヤー	衝突点からの距離	
0, 1	16 mm, 17 mm	
2, 3	37 mm, 38 mm	
4, 5	58 mm, 59 mm	
E _{CM} (GeV)	レイヤー0における pair BG 1 train分の	占有率(%)
е _{см} (Gev) 250	レイヤー01~おける pair BG 1 train分の1 0.8	占有率(%)
е _{см} (Gev) 250 350	レイヤー01~おける pair BG 1 train分の1 0.8 0.9	占有率(%)
е _{см} (Gev) 250 350 500	レイヤー01-817る pair BG 1 train分の1 0.8 0.9 2.8	占有率(%)

クラスター形状によるBGプリカット 開発状況

BGプリカット

トラッキングをする前に、
-シグナルクラスター: keep
- BGクラスター: Cut
すれば、
1. トラッキングに掛かる時間: 短くなる
2. トラック外挿のミス: 減る

1st Cut

以下のように長いクラスターは除外するようにした

Requirement				
ピクセル数	クラスタ幅 in rφ方向	クラスタ幅 in 磁場方向		
< 20	< 10 pixels	< 15 pixels		

例えば、ttbar 350GeVイベントが作るクラスターの99.87%は 保持されるのに対し、

BG @ 350GeV

layer No.	# of clusters before 1st Cut	# of clusters after 1st Cut	reduction of cluster rate
0	673500	626660	7%

これだけじゃあまり旨味が出ない

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

最内層のラダー

簡単のためtopクォークっぽい素粒子が2つできたとする

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

最内層のラダー

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

クラスターの傾きと座標の相関

最内層のラダー

クラスターの傾きと座標の相関

最内層のラダー

衝突点をラダーに射影した位置から見て、 クラスターは放射状に広がる傾向がある

クラスターの傾きと座標の相関

ー方、BGイベントは基本的に螺旋状のe+e-が飛ぶ

クラスターの座標と傾きの相関を利用した <u>"Area Z Cut"</u>

个のピクセルの一つ一つを プロットしている訳ではない

クラスターの座標と傾きの相関を利用した "Area Z Cut"

→ Area Z をカットしてもいいかもしれない

"1st Cut" + "Area Z Cut"の効果

Area Z Cutの掛	ttbar 350GeV	BG 350GeV
け具合	cluster yeild	cluster yeild
まあまあ緩め	98.3%	81.4%
最もキツイ	95.8%	62.5%

ttbar 350GeVのクラスターが2~4% 失われている

→実際にトラックの再構成をして何%まで許されるか評価する予定

Layers Transparency Camera Cuts Graphic Help Save screenshot GENERAL SHORTCUTS: [ESC] Quit CED [h] Toggle shortcut frame [CTRL+z] Undo 1 Toggle all detector layer: (F) Front projec large (7680 × 4144) very large (19200 × 10360) very very large (38400 × 20720) extrem large (192000 × 103600) ()[a] 43: ()[e] 44:] 35:] 36:] 37: () [] 27: FID (%) [;] 28: FIPC () [] 29: ECAL () [D] 30' HCAL () [D] 31' YOke () [] 22: Coil () [] 32: Coil () [] 33: LCAL, Beancal, ... () [] 34: SET ()[≢]14: ()[¾]15: ()[^]16: [S] Side projecti [] Show FPS 0 06: ClupatraTracks 07: MarlinTrkTracks DATA LAVERS: (X) [0] 00: MCParticle () [1] 01: VXDCollection, . [2] 02: () [3] 03: TruthTracks () [4] 04: ForwardTracks ()[1]23: ()[0]24: [v] Fisheye projection [b] Change background color, () () () () [m] Decrease detector cut angle [->] Move in z-direction [<-] Move in -z-direction [*] Toggle all data layers [r] Reset view [R] Reset CED [f] Front view [s] Side view (+) Zoom in (-) Zoom out (c) Center (Z) Cut in z-axe direction ○[8] 17: ○[*]18: ○[(]19: ○[t]20: 09: (________) 10; (__________) 10; (____________) [1] 11 VXDTracker Hits, (________) (@] 12; DETECTOR LAVERS: (_)[j] 25: VXD (X)[k] 26: SIT 42: Ó 17 FPCCD専用トラックファイン

25

トラックファインダーってなに?

図:ttbar 350 GeV のイベントが残すヒット点(赤) ttbar 350 GeV イベントはVXDだけでも大体600ヒット生成する。

人力じゃ面倒だし正確さに欠けるし主観が入る →トラックファインダーは自動でトラックを再構成するのに必要なヒット点を選別する

トラッキングをいじることになった経緯

以下の点で標準のトラッキング(DBDで使用)はFPCCDに合わない

1. ~ 1 umの位置分解能を想定していない →トラックFitのアルゴリズムを変えることで対応した

2.1 train分のBGヒットが溜まることを考慮していない

→KEKの計算機を使ったとき、 ttbar 350GeVイベントを1000イベント分トラッキング : 約3時間

同イベントにBGを1 train分乗せて1イベントトラッキング:少なくとも2時間以上

3. FPCCD独自のクラスター形状の情報を考慮していない →クラスター形状を用いたトラックサーチアルゴリズムを追加した

クラスター形状をトラックの外挿処理で使う

クラスター形状は粒子の軌道に大きく依存する

→クラスターの方向ベクトルの内積を計算する アルゴリズムを実装した、現在最適化中

Summary & Plan

Summary

- 標準のトラックファインダーではFPCCDの力を最大限に引き出せない (Low P_Tの粒子が苦手)
 – FPCCD専用トラックファインダーの開発へ
- FPCCD専用トラックファインダーを開発中、クラスター形状を用いた トラック外挿のアルゴリズムを実装した
- BG対策としてクラスター形状によるプリカットのアルゴリズムを 実装した

Plan

- ・ クラスター形状によるカットの最適化
- FPCCD専用トラックファインダーのクラスター形状を用いた 外挿アルゴリズムの最適化
- BG環境下でttbarイベントなどの多粒子事象をトラッキング できるようにアルゴリズムの変更、最適化を行う

以下Appendix

トラッキングをいじることになった経緯

以下の量を評価した↓

高品質トラック生成効率 : ŋ

VXDヒットを5つ以上持つトラックの数

サンプルのμ⁺の数

