準包括的再構成法を用いた $B \rightarrow X_s \gamma$ の崩壊分岐比の測定

齋藤 智之 (東北大理)

石川明正、山本均、 他 Belle collaboration

2013/09/21 日本物理学会2013年秋季大会@高知大学

 $b \rightarrow s\gamma$ 遷移

▶標準理論ではツリーレベルが禁止で、 ループダイアグラムで起こる。 ► ループを回る重い新粒子探索に有用 Inclusive, Breco-tag ▶ 膨大な γ 背景事象により、 LHCbでは難しい解析。 ▶ 誤差の範囲でSMと一致。 -->新物理モデルに強い制限

2013/9/21

日本物理学会 2013年秋季大会@高知大学

= 全体の69.0% (K₁モードも含む) 信号再構成まで以前のJPS(2012/03)で報告済み

 準包括的再構成法:多くのX_sの崩壊を 再構成し、γとともにBを再構成。
▶ハドロン化の理論的不定性を抑える
ことが可能。
▶ B を再構成することで、背景事象を
抑えることが可能。

▶本研究では、41の終状態を再構成

B→X_s γ 信号 = 高エネルギー γ +

 $B \rightarrow X_{s} \gamma O$ 再構成:準包括的再構成法

ストレンジネス1の終状態(X)

<i>X_sの</i> 内訳(%)(MC)		
$K\pi$	8.3	
Κ2π	15.0	
КЗπ	11.0	
$K4\pi$	5.8	
Κ5π	4.7	
Кη (π, 2π)	3.5	
$2\pi^{0}(\pi,2\pi)$	7.1	
<i>3K</i>	0.9	
3Кπ	1.6	
バリオン	1.3	
<i>K</i> _L モード	27.0	
その他	20.3	

本解析のポイント

背景事象の除去

D 崩壊由来の背景事象抑制:D veto

D(+π⁰)を含む崩壊からの背景事象が多く混入。
 ▶ 主にB→Dρ(分岐比が10²倍以上)。

qq 背景事象の抑制

- ●最大のBG源は軽いクォークjet事象(qq BG)。
- イベント形状で抑制。
 ニューラルネット(NeuroBayes)
 により最適な背景事象分離変数
 を計算.。

系統誤差抑制のため

► 高M_{Xs}領域のSignificanceで最適化。
--> 信号を60%保持し、 qq BGを 4%に低減。

信号抽出方法

▶ 統計誤差1.8%程度が期待できる。

Significance=9 以上確保

Signal

BB

Continuum

2 2.5 X_s mass(GeV)

D vetoの系統誤差

 $\blacksquare D$ vetoの系統誤差は $B \rightarrow J/\psi X_s$, $J/\psi \rightarrow ll$ ($l=e, \mu$) で見積もる。

2013/9/21

qq 背景事象 抑制の系統誤差

- qq BG抑制の系統誤差はコントロールサンプル $B \rightarrow D\pi$ を用いる。
 - ► クリーンかつ十分な量のサンプル。
 - ► Bからの π を信号の γ 、Dを X_s とみなす。

▶ ▶ MCとデータの効率差から2.06%の系統誤差とする

M_{Xs}分布の形の系統誤差

Mxs (GeV)

X。の崩壊モデルの系統誤差

- 信号再構成効率は X_sの終状態に依存。 --> MCのハドロン化モデルにデータを用いた較正が必要。
 - ▶ 再構成しているモード(69.0%)
 - ・データを用いて各モードでMCを較正。
 - ▶ 再構成していないモード(31.0%)
 - ・較正したMCを用いて、Pythiaのfragmentationの パラメータを動かして割合を変動させ系統誤差とする。
 ・最も影響のあるパラメータはfragmentation中に スピン1の軽いメソン(u, d)を作る確率
 - ▶▶▶ これらの系統誤差はデータを使って評価する。

誤差まとめ

統計誤差			1.81 %
BBの数			1.37 %
各粒子の再構成効率、PIDの効率			3.51 %
		π^{0}/η veto	0.67 %
背景事象除去		D veto	1.84 %
		qq BG	2.06 %
M_{bc} PDF			データで算出
		ふ分布の形	+3.83-1.46 %
<i>X_s</i> のモデル	ハドロン化		データで算出
	再構成していない X _s		データで算出

▶▶▶ 次はデータで崩壊分岐比を評価する。

まとめと予定

- ▶ 準包括的再構成法を用いた $B \rightarrow X_s \gamma$ の測定を行っている。
- ▶背景事象の抑制に成功し、統計誤差は1.8%程度が 期待できる。
- ▶系統誤差の研究を行い、誤差の算出と手法の確立を行った。

● 予定

- ▶ データを用いてMCを較正し、ハドロン化の系統誤差を 求める。
- ▶崩壊分岐比の結果を出す。

バックアップ

X_s decay in event generator

X_s mass (generator information)

2013/9/21

日本物理学会 2013年秋季大会@高知大学

$\pi^{0}(\eta)$ 由来の背景事象抑制: π^{0}/η veto

- ▶ 背景事象は π⁰(η)→γγ 由来が主
- ► 他の γ 候補(γ₂)と組んだときの
 - •不変質量 $m_{\gamma l \gamma 2}$

 $m_{\gamma 1 \gamma 2} (\text{GeV}^{s})^{in}$

--> 信号を75%保持し、 *π*⁰を背景事象を20%に低減

日本物理学会 2013年秋季大会@高知大学

Systematics on D veto

- In *D* veto for peaking BG, *D* candidates are reconstructed by reconstructed X_s children and are vetoed by the mass in M_{Xs} >2.0 GeV.
- In syst. study, $B \rightarrow J/\psi X_s$, $J/\psi \rightarrow ll$ $(l=e, \mu)$ is used and a lepton from J/ψ is added to X_s child to measure $M_{\chi_s} > 2.0$ GeV.
 - In X_s[±], an opposite charged lepton is treated as π[±] in X_s children and another lepton is treated as hard γ.
 - ► In X_s^0 , a higher energy lepton is treated as hard γ and another lepton is treated as π^{\pm} in X_s children.

Systematics on D veto

Efficiency on D veto is evaluated by using control sample $B \rightarrow X_s J/\psi$.

2013/9/21

Systematics on qq suppression

Control sample $B \rightarrow D\pi$ is used to estimate the systematic error on qq suppression.

Reconstruction

- π from *B* is treated as γ .
- Only final states which D decays are reconstructed
 (22 modes of 41 X_s modes).
- Difference on selection
 - $\gamma(\pi)$: no E_{g}/E_{25} cut, π^{0}/η veto
 - $X_s(D)$: no D veto, 1850< M_D <1880 MeV

Systematics on qq suppression

• Efficiencies on qq suppression are evaluated by using a control sample $B \rightarrow D\pi$.

2013/9/21

日本物理学会 2013年秋季大会@高知大学

Systematics on PDF for M_{bc}

Systematics on signal, cross-feed and BB PDF are evaluated because the shape parameters are fixed in M_{bc} fit.

Signal and Cross-feed PDF

- ▶ PDF obtained from $B \rightarrow D\pi$ data.
- The fixed shape parameters are fluctuated by the statistical error to extract signal yield, whose width is taken as the syst.

BB background PDF

- ▶ PDF can be calibrated by data with anti- π^0/η veto.
 - \rightarrow Study is ongoing.

Detector response

	Reference	Method
PID	PID joint web page	Program on the PID page
γ detection	BN711	
Charged track	BN1165	Data/MC = $(99.9 \pm 0.32)\%$ per track
π ⁰ (p>200MeV)	BN645	Data/MC = (92.4 \pm 1.42)% per π^0
η(p>200MeV)	BN645	Data/MC =(104±2.00)% per η
Slow π ⁰ (p<200MeV)	BN1176	[SVD1]:Data/MC =(105 \pm 5.87)% per π^0 [SVD2]:Data/MC =(102 \pm 2.41)% per π^0
Slow η	BN1176	Same as slow τ^0
(p<200MeV)		FindKs, not hisKsfinde
K _s	BN1207	[SVD1]:Data/MC =(99.0 \pm 1.03)% per K _s [SVD2]:Data/MC =(98.1 \pm 0.49)% per K _s

Each systematics is calculated every final state and

finally combined using the weight.

2013/9/21

Systematics on D veto

- In *D* veto for peaking BG, *D* candidates are reconstructed by X_s children and are vetoed by the mass in M_{Xs} >2.0 GeV.
- In syst. study, $B \rightarrow J/\psi X_s$, $J/\psi \rightarrow ll \ (l=e, \mu)$ is used and a lepton from J/ψ is treated as X_s child to measure $M_{Xs} > 2.0$ GeV.
 - In X_s[±], an opposite charged lepton is treated as π[±] in X_s child and another lepton is treated as hard γ.
 - ► In X_s^0 , a higher energy lepton is treated as hard γ and another lepton is treated as π^{\pm} in X_s child.
 - Lepton selection
 - $p_{\mu(e)} > 0.80(0.40)$ GeV,
 - μ(e)ID>0.97(0.80)
 - Di-lepton mass cut
 - 3.05(3.02) < M_{μμ(ee)} < 3.12GeV

2013/9/21

$B \rightarrow X_s \gamma$ branching ratio

Mode	B	E_{\min}	$\mathcal{B}(E_{\gamma} > E_{\min})$	$\mathcal{B}^{\rm cnv}(E_{\gamma} > 1.6)$
CLEO Inc. [2]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$	$328\pm44\pm28\pm6$
Belle Semi.[3]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	—	$369 \pm 58 \pm 46 \pm 60$
Belle Inc.[4]	_	1.7	$345\pm15\pm40$	$350\pm15\pm41\pm1$
BABAR Semi.[5]	—	1.9	$329 \pm 19 \pm 48$	$352\pm20\pm51\pm4$
BABAR Inc. [6]	_	1.8	$321\pm15\pm29\pm8$	$332\pm16\pm31\pm2$
BABAR Full [7]	$391\pm91\pm64$	1.9	$366\pm85\pm60$	$390\pm91\pm64\pm4$
Average				$343\pm21\pm7$

$$b \rightarrow s \gamma$$

$$\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5 \left| V_{ts}^* V_{tb} \right|^2}{32\pi^3} \left| \frac{C_7^{\text{eff}}}{7} \right|^2$$

Effective Hamiltonian of inclusive radiative B decay $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$

 C_i : Wilson coefficient

- $O_{1,2}$: current current operator
- O_{3-6} : QCD penguin operator
- $O_{7.8}$: electro- and chromo operator
- $O_{9,10}$: semi-leptonic operator

$B \rightarrow X_s \gamma$ asymmetries

Direct CPV : Amplitude difference and between B and B

$$A_{CP} = \frac{\Gamma(B \to X_s \gamma) - \overline{\Gamma}(\overline{B} \to X_s \gamma)}{\Gamma(B \to X_s \gamma) + \overline{\Gamma}(\overline{B} \to X_s \gamma)}$$

 Theoretical and experimental error are canceled.(Exclusive is also sensitive to NP)

Isospin violation : Amplitude difference and between B and B $\Delta_{0+} = \frac{\Gamma(B^+ \to X_s \gamma) - \Gamma(B^0 \to X_s \gamma)}{\Gamma(B^+ \to X_s \gamma) + \Gamma(B^0 \to X_s \gamma)}$ SM = +5~10%

	Belle	Babar
A_{CP}	$0.002 \pm 0.050 \pm 0.030 \ (140 \ \text{fb}^{-1})$	$-0.011\pm0.030\pm0.014$ (350fb ⁻¹)
\varDelta_{0+}	No	$-0.006 \pm 0.058 \pm 0.009 \pm 0.024$ (350fb ⁻¹)

 X_s mass vs γ energy

2013/9/21

日本物理学会 2013年秋季大会@高知大学

qq BG suppression : Input variables

2013/9/21

日本物理字会 2013年秋季大会@高知大学

(a) $K\pi$

(f) $3K\pi$

(g) $K\eta$

(h) $K\eta\pi$

(i) $K\eta 2\pi$

32