# 国際リニアコライダーにおける ヒッグスの質量・断面積・ およびCP混合の解析

## 2013年9月22日 日本物理学会 **綿貫峻、**山本均、石川明正、末原大幹、藤井恵介<sup>A</sup> (A:KEK)

# 目次

- ◆国際リニアコライダー(ILC)概要
   ◆研究テーマ概説
- ◆ヒッグス反跳質量 & 断面積◇反跳について

  - ♦ Crossing Angle
  - ◇セレクション
  - ◇カットテーブル
  - ◇結果

◆ヒッグスCP混合
 ◇CP混合概要
 ◇解析方法
 ◇解析の流れ
 ◇結果





全長31km、電子・陽電子衝突型の線形加速器
 E<sub>CM</sub>[GeV]=250, 350, 500 (1TeVにアップグレード予定)
 検出器はILD、SiDのpush pull形式を採用予定
 クリーンな環境での実験が可能
 ヒッグスの精密測定が可能

# 研究テーマ概説

◆ヒッグスの反跳質量・断面積

→ 標準理論のヒッグスか、BSMのヒッグスか?

◇断面積,結合定数を測定する事で区別ができる

→ <u>Model Independent</u>なILCの解析なら可能!

◇質量も重要な物理量のひとつ

◇ILCにおける質量と断面積の測定精度の解析

◆ヒッグスのCP混合

♦標準理論ではヒッグスのCPは完全に「偶」

◆新物理に感度のあるCP混合についての解析



## 反跳によるヒッグス測定

◆ILCの特徴のひとつ、レプトン同士の衝突であること =始状態(特に4元運動量)が既知



サンプル、イベント

| ヒッグス質量    | 重心<br>エネルギー | 積分<br>ルミノシティ         | スピン偏極                      | 検出器                      |
|-----------|-------------|----------------------|----------------------------|--------------------------|
| 125 [GeV] | 250 [GeV]   | 250 fb <sup>-1</sup> | P(e⁻, e⁺)<br>=(-0.8, +0.3) | ILD_01_v05<br>(DBD ver.) |

◆Signal &BGイベント



## **Crossing Angle**



Crossing Angle
 ILCではビームの衝突に14[mrad]の角度がついているので、
 Boostを考慮して計算をした

◆この効果を入れないとRecoil massの分布が潰れて、幅が大 きくなってしまう



### ◆Zから崩壊したµペアをセレクション

|        |                                                                         |                                                                                               | フィット&                                                                                                                                                                           |
|--------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Cut | μ decayed<br>from Z                                                     |                                                                                               | エラー<br>評価                                                                                                                                                                       |
|        | (good track)                                                            | ☆ ゆるいセレ                                                                                       | <ul> <li>◆ di-muon横運動量 p<sub>Tdl</sub></li> <li>◆ di-muon不変質量 M<sub>dl</sub></li> </ul>                                                                                         |
|        | <ul> <li>◆ Zから崩壊</li> <li>したµ</li> <li>◆ トラック</li> <li>クォリティ</li> </ul> | <ul> <li>◇ ゆるい ビレ<br/>クションで<br/>数の多い<br/>µµイベント<br/>を削減</li> <li>◇ インパクト<br/>パラメータ</li> </ul> | <ul> <li>◇ di-muon方位角差 acop</li> <li>◇ 高エネルギー光子との横運<br/>動量差 δp<sub>Tbal</sub></li> <li>◇ 検出粒子のmissing angle</li> <li>◇ 反跳質量 M<sub>recoil</sub></li> <li>◇ Likelihood</li> </ul> |
|        |                                                                         |                                                                                               | <ul> <li>◇ di-muon角度差</li> <li>◇ di-muonのcosθ</li> <li>◇ di-muon不変質量</li> </ul>                                                                                                 |

# カットテーブル

|                             | signal<br>μμ <b>h</b> | eff.<br>(%) | μμνν       | eff.<br>(%) | μμff       | eff.<br>(%) | τΙνν       | eff.<br>(%) | τlff      | eff.<br>(%) | other<br>(μμ) | eff.<br>(%) |
|-----------------------------|-----------------------|-------------|------------|-------------|------------|-------------|------------|-------------|-----------|-------------|---------------|-------------|
| no<br>cut                   | 2574                  |             | 1496<br>36 |             | 1604<br>32 |             | 5965<br>18 |             | 8341<br>8 |             | ~1.0<br>M     |             |
| μ<br>select                 | 2269                  | 88.12       | 1246<br>7  | 8.33        | 7864       | 4.90        | 3010       | 0.50        | 28        | 0.04        | 1464<br>9     | 0.14        |
| p <sub>Tdl</sub>            | 2164                  | 84.04       | 1065<br>3  | 7.12        | 6799       | 4.24        | 2706       | 0.45        | 27        | 0.04        | 8970          | 0.09        |
| M <sub>dl</sub>             | 2057                  | 79.90       | 6458       | 4.32        | 5901       | 3.68        | 1404       | 0.24        | 19        | 0.02        | 7518          | 0.07        |
| асор                        | 1922                  | 74.66       | 6078       | 4.06        | 5370       | 3.35        | 1290       | 0.22        | 11        | 0.02        | 6637          | 0.06        |
| $\delta p_{Tbal}$           | 1876                  | 72.87       | 5949       | 3.98        | 4965       | 3.09        | 1267       | 0.21        | 11        | 0.02        | 927           | 0.01        |
| $\cos\theta_{\rm m}$ issing | 1865                  | 72.44       | 5949       | 3.98        | 4705       | 2.93        | 1267       | 0.21        | 11        | 0.02        | 682           | 0.01        |
| M <sub>recoil</sub>         | 1863                  | 72.35       | 3987       | 2.66        | 2643       | 1.65        | 882        | 0.15        | 11        | 0.02        | 453           | 0.00        |
| f                           | 1580                  | 61.37       | 2401       | 1.60        | 1734       | 1.08        | 333        | 0.06        | 0         | 0           | 350           | 0.00        |

# フィット方法

### ◆フィット関数

◆フィット方法

- ◆signalおよびフィットしたBGについて、ポアソン分布でToy-MCを振る
- - ただし、GPETのmeanとheightのみフリーパラメータとし、その他のパラメータは1回目のフィットの値で固定



◆フィット関数:GPET + pol3 shapeを保ちつつ、meanと heightのみフリーパラメータと してフィット

Toy-MCは10000回作成
 meanとheightがそれぞれ
 massとcross sectionに対応

◆エラー mass error : 37MeV cross section error : 3.6% (先行研究(M<sub>h</sub>=120GeV)で はそれぞれ 37MeV, 3.33%)



# CP mixture CP mixture



#### ◆ヒッグスのCP mixtureをη、Zの生成角をcosθとすると、 μμhイベントの微分断面積は

 $\frac{d\sigma}{d\cos\theta} = \frac{G_F^2 M_Z^6 \beta}{16\pi} \frac{1}{D_Z(s)} \left( v_e^2 + a_e^2 \right) \left[ 1 + \frac{s\beta^2}{8M_Z^2} \sin^2\theta + \eta \frac{v_e a_e}{v_e^2 + a_e^2} \frac{2s\beta}{M_Z^2} \cos\theta + \eta^2 \frac{s^2\beta^2}{4M_Z^2} \left( 1 - \sin^2\frac{\theta}{2} \right) \right]$  $\eta \mathcal{O} 1$ 次の可により偶と奇が干渉





cross sectionはcosθ=0 cross sectionがcosθ=0で で最大になる 最大にならない ◆Zボソンのdo/dcosqを2次関数でフィットすることでηを測定 ◆do/dcosθのs依存性から、350GeV, 500GeVといった高エネ ルギーでのη測定の感度も見積もる ◆di-muon系を見つけてZボソ ンを再構成し、生成角度cosθ の分布を得る

◆MCから得られた分布で割っ てefficiency分布を得る

◆η=0の理論関数にefficiency をかけたものを得、Toy-MCを 振る

◆Toy-MCを2次関数でフィットし、η≠0の理論関数と比較して measured ηを決定



cosT toy

1400

1200

1000

800

600

400

200

-0.8 -0.6 -0.4 -0.2 0



efficiency

cosθ

Toy-MC

0.2 0.4 0.6



◆Toy-MCは1000回 CP mixture h mean: 0.0002461 error: 0.00237 ▶generatorは標準理論にした がうものを使用(すなわち、 generatorレベルでは $\eta=0$ ) ◆(meanの0からのずれは 元々の統計数の少なさが原 因)



# まとめと今後

- ◆ヒッグス反跳質量・断面積の測定精度
  - ◇ILCにおけるヒッグスの質量・断面積の精密測定は非常に 重要である
  - →µµhチャンネルでのエラーは、
     massが37MeV、cross sectionが3.6%
  - ◆eehチャンネル(Zh → eeh)でも同様の解析をし、結果を統 合する
- ◆ヒッグスCP混合の解析
  - ◆2HDMに感度のあるヒッグスCP混合ηの測定精度