The measurements of Higgs recoil mass and cross section at the $E_{CM} = 250$ GeV

Shun Watanuki^A, H.Yamamoto^A, A.Ishikawa^A, T.Suehara^B, K.Fujii^C

(A: Tohoku University, B: Kyushu University, C: KEK)

Target

One of the advantages of the ILC is model independent(MI) analysis of Higgs properties by recoil method.

How precise can we measure Higgs mass and cross section by this method? The considered situation is ...

Higgs mass	Center of	Integrated	Spin	Detector
	Mass Energy	Luminosity	Polarization	Simulation
125 [GeV]	250 [GeV]	250 fb ⁻¹	P(e ⁻ , e ⁺) =(-o.8, +o.3)	ILD_01_v05 (DBD ver.)

Using only Zh -> Ilh ($l=\mu$, or e) signal event.

Signal and Background Events

- These are $\mu\mu h$ channel signal & BGs.
- For eeh channel study, character of " μ " is altered to "e".

Lepton Selection

- Muon (and electron) selection
 - Momentum p > 15 [GeV]
 - Small (Large) energy deposite in caloriemeters
 - $E_{ecal} / E_{total} < 0.5 (> 0.6)$
 - $E_{total} / p_{track} < 0.3 (> 0.9)$
- Good track selection
 - Track with small error (different selections between polar angle of tracks, barrel or end cap)

```
dp / p^2 < 2.5 x 10<sup>-5</sup> \oplus 8 x 10<sup>-4</sup> / p (for cos\theta < 0.78)
dp / p^2 < 5 x 10<sup>-4</sup> (for cos\theta > 0.78)
```

- Impact parameter (only for muon)
 - To suppress muons from tau decays which tend to have large impact parameters. $D_0 / dD_0 < 5$

Bremsstrahlung Recovery

- Only for eeh channel cross section measurements, the photon's momentum around final state electron ($\cos\theta > 0.999$) is added to the electron.
- This process contributes the distribution of recoil mass significantly.
- For mass analysis, it is effective not to perform the recovery.

Emciency rable										
μμh	signal		μμνν		μμff		τΙνν	τlff	others	
No Cut	2574		149636		160432		596518	83418	~10M	

7864

6799

5901

5370

4965

4705

2643

1734

eeff

8076

7175

5243

4790

184568

8.33%

7.12%

4.32%

4.06%

3.98%

3.98%

2.66%

1.60%

8.75%

7.86%

4.56%

4.35%

μμh	signal	μμνν		μμff		τΙνν		τlff		others	
No Cut	2574	149636		160432		596518		83418		~10M	

4.90%

4.24%

3.68%

3.35%

3.09%

2.93%

1.65%

1.08%

4.38%

3.89%

2.84%

2.60%

3010

2706

1404

1290

1267

1267

882

333

τΙνν

596518

11996

11213

6142

5516

0.50%

0.45%

0.24%

0.22%

0.21%

0.21%

0.15%

0.06%

2.01%

1.88%

1.03%

0.92%

28

27

19

11

11

11

11

0

τlff

273

196

122

83

73

72

57

60970

0.03%

0.03%

0.02%

0.01%

0.01%

0.01%

0.01%

0.45%

0.32%

0.20%

0.14%

0.12%

0.12%

0.09%

0.00%

0%

14649

8907

7518

6637

927

682

453

350

others

~10M

75814

51342

31762

25227

7195

6489

4419

974

0.14%

0.09%

0.07%

0.06%

0.01%

0.01%

0.00%

0.00%

0.74%

0.50%

0.31%

0.25%

0.07%

0.06%

0.04%

0.01%

4.14%	4094	2.22%	5300	0.89%
4.14%	3848	2.09%	5300	0.89%
2.91%	2294	1.24%	3997	0.67%
0.98%	840	0.46%	966	0.16%

Selection

 p_{TdI}

 M_{dl}

acop

 dp_{Tbal}

 M_{recoil}

eeh

 p_{TdI}

 M_{dl}

acop

 dp_{Tbal}

 M_{recoil}

cosq_{missing}

Likelihood

No Cut

Selection

 $\mathsf{cosq}_{\mathsf{missing}}$

Likelihood

2271

2160

2050

1916

1871

1859

1856

1564

signal

2701

1924

1874

1729

1614

1552

1543

1523

1026

88.21%

83.89%

79.65%

74.43%

72.70%

72.22%

72.10%

60.77%

71.23%

69.39%

64.01%

59.75%

57.46%

57.13%

56.39%

37.97%

12467

10653

6458

6078

5949

5949

3987

2401

eevv

145891

12771

11470

6649

6339

6038

6034

4242

1428

Fitting Method

Fitting function

signal -> Gaussian Peak with Exponential Tail (GPET)

$$\begin{cases} Ne^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}} \left(\frac{x-\bar{x}}{\sigma} < k\right) \\ N\left\{be^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}} + (1-b)e^{-k\frac{x-\bar{x}}{\sigma}}e^{\frac{b^{2}}{2}}\right\} \left(\frac{x-\bar{x}}{\sigma} \ge k\right) \end{cases}$$

BG -> 3rd order polynomial

* GPET has 5 parameters

♦ height: N

 \Leftrightarrow mean : \overline{x}

♦ width: s

♦ boundary : k

Toy-MC study

- The sum of signal and BG distributions are fitted with the functions above.
- Make the toy-MC events according to the fitted functions.
- Fit the distribution again with the same function by floating height and mean of GPET.

- [µµh] Statistical Errors :
 - cross section error 3.6%
 - mass error 37MeV

- [eeh] Statistical Errors :
 - cross section error 5.2%
 - mass error 122MeV
- Statistical errors for combination of $\mu\mu h$ and eeh results.
 - cross section error 3.0%
 - mass error 35MeV

Semi Model Independent Analysis

μμh	signal		mmnn		mmff		tlnn	${\sf L}$
No Cut	2574		14963 6		160432		596518	
Selection	2271	88.21%	12467	8.33%	7864	4.90%	3010	c
P _{Tdl}	2160	83.89%	10653	7.12%	6799	4.24%	2706	a
M _{dl}	2050	79.65%	6458	4.32%	5901	3.68%	1404	o
асор	1916	74.43%	6078	4.06%	5370	3.35%	1290	9
dp _{Tbal}	1871	72.70%	5949	3.98%	4965	• 3.09%	1267	
cosq _{missing}	1859	72.22%	5949	3.98%	4705	2.93%	1267	4
M _{recoil}	1856	72.10%	3987	2.66%	2643	1.65%	882	4
Likelihood	1564	60.77%	2401	1.60%	1734	1.08%	335	٥

There seems to be large number of remaining BG events with neutrino.

μμh	sig	μμνν	τΙνν
After	1564	2401	333 ·
eeh	sig	eevv	τΙνν

1026

1428

966

eeh	signal		eevv		eeff		τίνν		tiff		others	
No Cut	2701		145891		184568	•	596518		60970		~10M T	
Selection	1924	71.23%	12771	8.75%	8076	4.38%	11996	2.01%	273	0.45%	75814	0.74%
P _{TdI}	1874	69.39%	11470	7.86%	7175	3.89%	11213	1.88%	196	0.32%	51342	0.50%
M _{dl}	1729	64.01%	6649	4.56%	5243	2.84%	6142	1.03%	122	0.20%	31762	0.31%
асор	1614	59.75%	6339	4.35%	4790	2.60%	5516	0.92%	83	0.14%	25227	0.25%
dp _{Tbal}	1552	57.46%	6038	4.14%	4094	2.22%	5300	0.89%	73	0.12%	7195	0.07%
cosq _{missing}	1543	57.13%	6034	4.14%	3848	2.09%	5300	0.89%	72	0.12%	6489	0.06%
M _{recoil}	1523	56.39%	4242	2.91%	2294	1.24%	3997	0.67%	57	0.09%	4419	0.04%
Likelihood	1026	37.97%	1428	0.98%	840	0.46%	966	0.16%	2	0.00%	974	0.01%

■ Since contribution from Higgs invisible decays can be calibrated with data, visible

After

- energy selection is effective for reducing these BG.
- \Box $E_{vis} := E_{PFOs} E_{di-lepton} > 5 [GeV]$
- Loose selection is applied to avoid bias in signal selection.

Efficiency Table (Semi-MI)

μμh	signal ·		μμνν		τΙνν		others	
No Cut	2574		149636	·.	596518		~10M	
~M _{recoil}	1856	72.10%	3987	2.66% [.]	882	0.15%	3107	0.03%
·E _{vis}	1854	72.01%	926	0.62%	137	0.02%	3107	0.03%
Likelihood	1811	70.37%	836	0.56%	103	o <u>.</u> 02%	2837	0.03%
eeh	signal	•	eevv		τΙνν		others	
eeh No Cut	signal	•	eevv		τΙνν 596518		others ~10M	
No Cut		56.39%		2.91%		o.67%		0.06%
	2701		145891	2.91% 0.97%	596518	o.67% o.29%	~10M	o.o6% o.o6%

Likelihood limit value is re-optimized for new visible energy selection.

Result (Semi-MI)

μμh

eeh

- Statistical Error :
 - cross section error 3.0%
- Statistical Error :
 - cross section error 4.6%
- \Box Combination of $\mu\mu h$ and eeh results :
 - cross section error 2.5%

E_{visible} Selection for Mass Analysis

For mass measurement, it doesn't

have to be model independent.

E_{vis} limit value can <u>be set large</u>.

- = Maximizing $N_{sig}/sqrt(N_{sig}+N_{BG})$
- Mass error result

 - eeh : 92MeV

combined result

9.5

20

40

E_{vis} [GeV]

Recoil Mass (MI & MD)

Summary of Results

Cross section	μμh	eeh	Combined
MI	3.6%	5.2%	3.0%
semi-MI	3.0%	4.6%	2.5%

Mass	μμh	eeh	Combined
MI	37MeV	122MeV	35MeV
MD	33MeV	92MeV	31MeV

Summary

- The recoil mass technique is important feature at the ILC to measure Higgs mass and cross section of Zh event.
- The measurement errors are ...
 - Cross section error : ±3.0%
 - Mass error : ±35MeV
- Visible energy selection is very effective to suppress BG.
 - Higgs invisible decays can be calibrated with data.
 - Cross section error : $\pm 2.5\%$ (E_{vis} > 5GeV)
 - Mass error : $\pm 31 \text{MeV}$ (E_{vis} > 45GeV for $\mu\mu h$, 70GeV for eeh)

Backup Slides

About eeh channel

	signal	BG
LOI	1491	3394
DBD	1026	4210

The balance of number of remaining BG events = 800

	τνΙν	τlff
LOI	0	О
DBD	966	2

The number of remaining $\tau v | v$ events in this DBD study = 966

This might not be considered, in the first place.

- One of the reasons of worse results (compared with previous LOI study) seems to be $\tau v l v$ BG events which have not considered in LOI study.
- If I reduce BG arbitrarily to the same order of LOI case, result of cross section error will be improved as LOI result.
- The reason of wider width of recoil mass distribution in eeh channel is investigated now (maybe bremsstrahlung recovery).

Various Figures of LOI

top : μμΧ result of Lol

bottom left: eeX result of LoI

bottom right: eeX result of LoI (brems recovery)

