ILCにおけるFPCCD崩壊点検出器のための トラックファインダー開発と フレーバータグ性能評価

森達哉 釜井大輔 宮本彰也^A 杉本康博^A 石川明正 末原大幹^B 加藤恵里子 山本均 東北大学 KEK^A 九州大学^B

- 1. 国際リニアコライダー(ILC)の紹介
- 2. FPCCD崩壊点検出器の紹介
- 3. 本研究について
 - 1. トラッキング効率の評価
 - 2. 新トラックファインダーの開発
 - 3. フレーバータグの性能評価
- 4. まとめ

International Linear Collider (ILC)の紹介

ILCの検出器ILDの紹介

トラッカーは内側から
1. 崩壊点検出器(VXD) (シリコンピクセル型検出器)
2. SIT (シリコンストリップ型検出器)

 TPC (ガスチェンバー型検出器)

ビームに平行な向きに印加

ヒッグスと崩壊点検出器

高性能な崩壊点検出器が必要

FPCCD崩壊点検出器の紹介

<u>FPCCD (Fine Pixel CCD) の特徴</u>

- 小さなピクセル: 5-10 µm (右表)
- 厚み: 50 µm (その内15 µmは有感層)
- ・ ピクセル数:~0.4 x 10⁹

レイヤー	衝突点 からの距離(mm)	ピクセル サイズ(μm²)
0	16	5 × 5
1	18	5 × 5
2	37	10 × 10
3	39	10 × 10
4	58	10 × 10
5	60	10 × 10

• 読み出し:1312バンチ(1トレイン)毎

<mark>メリット:</mark> ビーム由来の高周波ノイズは無視できる

デメリット: ヒット点が多くなるので トラッキングが難しい

トラッキング効率の評価

シミュレーションセットアップ

- ・サンプル : tī → 6 jets @ 350 GeV
- BGサンプル: e⁺e⁻ ペアBG → 崩壊点検出器における主要なBG
 - ・e⁺e⁻ビームから放射されるγが対生成してe⁺e⁻のペアが大量発生
 - ・低い横運動量を持つ → 何度もセンサーに入ってくる
- ・崩壊点検出器の設定

レイヤー	位置分 (µm)	解能	ー度の 読み出 寄与す	しに るBX数
	CMOS	FPCCD	CMOS	FPCCD
0	2.8	1.4	90	1312
1	6.0	1.4	18	1312
2	4.0	2.8	180	1312
3	4.0	2.8	180	1312
4	4.0	2.8	180	1312
5	4.0	2.8	180	1312

現行のトラッキングアルゴリズム

現行のトラッキング とトラッキング効率

FPCCDTrackFinderの開発

FPCCDTrackFinderのアルゴリズム概要1

すると過程した時の飛跡

FPCCDTrackFinderのアルゴリズム概要2

- フィッターに多重クーロン散乱、エネルギー 損失を考慮するカルマンフィルターを使用
 - →計算量は多いが正当に フィットが行われ、低p_Tトラックが 生き残りやすい
- 外挿範囲をフィッターから得られるトラック パラメターの誤差から決定

→ 効率的な外挿処理の範囲が決まる

FPCCDTrackFinder VS 現行のトラッキング with FPCCD (p_T)

効率が~99%に改善@p_T > 0.6 GeV/c

FPCCDTrackFinder VS 現行のトラッキング with FPCCD (cosθ)

効率が~99%に改善@|cose|<0.9

ペアBG が有る時のFPCCDTrackFinderの性能 (P_T)

```
参考: TPCの内径、外径に届くのに必要なp<sub>T</sub>
内径: 0.4 GeV/c
外径: 1.8 GeV/c
```


ペアBGを考慮しても~99% を維持 @ p_T > 0.6 GeV/c

ペアBG が有る時のFPCCDTrackFinderの性能 (cosθ)

参考: SITのアクセプタンス |cos0| < 0.9

ペアBGを考慮しても~99%を維持@|cosθ|<0.9

ペアBG が無い時のフレーバータグの性能評価

- FPCCDTrackFinderによりpurity 70%のc-tag efficiencyが 2.5%改善
 FPCCD崩壊点検出器を使用することで
 - 1. purity 90%のb-tag efficiencyを2%改善
 - 2. purity 70% のc-tag efficiency を 4% 改善

- ・ ペアBGによってフレーバータグの性能は低下する
- ペアBGが有る時も現行のトラッキングよりFPCCD TFの方が優勢
- ペアBGが有る時は FPCCD より CMOS の方が優勢

まとめ

◆FPCCDTrackFinderの開発

- トラッキング効率が p_T > 0.6 GeV/c、 |cosθ| < 0.9 で ~99% まで改善
- ペアBGを考慮してもトラッキング効率がp_T > 0.6 GeV/c、 |cosθ| < 0.9 では ~ 99 % を維持

◆<u>フレーバータグの性能評価</u>

- ・FPCCDTrackFinderにより purity 70%の c-tag efficiency が 2.5% 改善
- FPCCD崩壊点検出器を使用することによって、purity 90%のb-tag efficiency を2%、purity 70%のc-tag efficiencyを4%改善
- ・ペアBGによりフレーバータグの性能が悪化することを示した

ペアBGクラスター除外アルゴリズムの開発

日本物理学会2014春季大会

<u>第一種クラスターカット</u>:
・ ペアBGクラスターは比較的長いことを利用する

<サンプル> tī → 6 jets @ 350 GeV

レイヤー (ピクセル幅)	ピクセル数	ζ 方向の クラスター幅 [ピクセル幅]	ξ 方向の クラスター幅 [ピクセル幅]	シグナル クラスター 残存率 [%]	ペアBG クラスター 残存率 [%]
0 (5µm)	< 20	<15	< 10	99.28	92.85
2 (10µm)	< 15	< 8	< 6	99.21	91.81

クラスターの座標と傾きの相関を利用したカット

クラスターの座標と傾きの相関を利用したカット

<u>傾きカット</u>:

Minor Area = ξ × ζ < Z_{par} : (Z_{par} > 0) をカット (左上がりについても行う)

くサンプル> $t\bar{t} \rightarrow 6$ jets	レイヤー (ピクセル幅)	Z _{par} [mm ²]	シグナルクラスター 残存率 [%]	ペアBGクラスター 残存率 [%]
@ 350 GeV	0 (5µm)	90	98.33	81.41
_	2 (10µm)	280	98.24	81.91

<第一種クラスターカット + 傾きカット>

クラスターのz座標 とζ方向の幅の相関を利用したカット

<サンプル> tī → 6 jets @ 350 GeV

(括弧内はピクセルヒット残存率)

レイヤー (ピクセル幅)	Z _{par} [mm²]	B _{par} [ピクセル幅]	C _{par} [ピクセル幅]	シグナル クラスター 残存率 [%]	ペアBG クラスター 残存率 [%]
0 (5µm)	90	2	4	98.00 (93.42)	79.06 (58.43)
1 (5µm)	90	2	4	98.18 (93.51)	79.79 (60.34)
2 (10µm)	280	1	2	98.13 (92.16)	80.85 (60.41)
3 (10µm)	280	1	2	98.13 (92.73)	81.16 (61.42)
4 (10µm)	600	1	2	98.73 (94.08)	88.02 (69.18)
5 (10µm)	600	1	2	98.63 (94.04)	87.56 (68.91)

トラッキング効率、フレーバータグの性能評価 では上記のクラスターカットを適用して評価している

ヒットのディジタル化について

- 本研究において、FPCCD用のディジタイザーは FPCCDDigitizer, FPCCDClustering を使用
- ・ピクセルヒットはFPCCDDigitizer, FPCCDClusteringにより ランダウ分布、閾値、通過距離を考慮して生成される
 - 閾値: 0.725 keV
 - ・1ADC カウントあたり0.091 keV
 - ADC **カウントは**7bit 使用

本当はSITも関係するが 簡単のためVXDだけで考える

簡単のためVXD layersを円筒型で近似

トラックシード生成

Φ方向に4.5°ずつ区切られた 各エリア内にある3層上の 各ヒットからトラックシードを生成

可能ならトラックと トラックを結合

残っているトラックに 可能ならヒットを付け足す

Full トラック

現行版とFPCCD専用の違い

(現行版) Φ方向に4.5°ずつ区切られた 各エリア内にある3層上の 各ヒットからトラックシードを生成

(FPCCD版) 最外層のヒットを基準にP_T > 0.18 GeV/c のトラックを拾えるΦ幅を計算

そのエリア内にある3層上の 各ヒットからトラックシードを生成 (外側3層のみ使用)

red dashed line:

現行版とFPCCD専用の違い

<u>(</u>現行版) <u>外挿するエリア:</u> Φ方向に 区切られたエリア内

<u>使用フィッター:</u> シンプル・ヘリックスフィット (FPCCD版) <u>外挿するエリア</u>: フィッターから得られるトラックパラメターから決定

<u>使用フィッター</u>:カルマンフィルター

<u>クラスターの情報</u>:使用→外挿ミスの削減

クラスターを用いた外挿処理

クラスターの形状を見ることで外挿ミスが起きる可能性を落とす

- 1. We calculate inner dot between candidate cluster and a cluster on the neighbor layer
- 2. If the dot is < 0.4, the candidate cluster is excluded from the candidates

Area for

Extrapolation

ttbar @ 350 GeV の トラッキングのCPU時間とメモリ

<u>サンプル: ttbar 350 GeV/c + ペアBG</u>

FPCCDTrackFinder を使用する

- CPU時間
 - •~3 時間 / event

>トラックシード生成処理が多くのCPU時間を必要とする Track seed : Extrapolation = 5 : 1

・メモリ

• ~ 3.5 GB / event

ペアBGの占有率の評価

ピクセル占有率の評価

- 崩壊点検出器における主要なBG: e+e-ペアBG
 - ・e+e-ビームから放射されるγが対生成してe+e-のペアが大量発生
 - ・低い横運動量を持つ

<u>評価方法</u>:

ペアBGにより生成されるピクセルヒット数から 各レイヤー毎の占有率を計算

<u>サンプル</u>: ペアBGイベント @ 250, 350, 500, 1000 GeV

<u>サンプル数</u>: 1 トレイン (ただし1000 GeV は1000バンチ衝突(以下BX)のみ。 これを1 トレインに換算)

<u>1 TeV のビームランでは問題有り</u>

- <解決策>
- ・ レイヤーを衝突点から遠ざける
- ・ ピクセルを小さくする
- クラスター形状からペアBGクラスターを除外する
 → (時間の都合によりカット)

インパクトパラメータ分解能の評価

インパクトパラメータ分解能とは

日本物理学会2014春季大会

<u>評価方法</u>:

- 1. single μ+ イベントをトラッキング
- トラックのインパクトパラメータ をガウシアンでフィット
- 3. フィット結果のσを インパクトパラメータ分解能とする

FPCCDの比較対象としてCMOS(現行のVXDシミュレータ)
 も同様に評価

CMOS(現行のVXDシミュレータ)

FPCCD

レイヤー	位置分解能 (μm)	ー度の読み出しに 寄与するBX数	位置分解能 (μm)	ー度の読み出しに 寄与するBX数
0	2.8	90	1.4	1312
1	6.0	18	1.4	1312
2	4.0	180	2.8	1312
3	4.0	180	2.8	1312
4	4.0	180	2.8	1312
5	4.0	180	2.8	1312

インパクトパラメータ分解能の評価結果

要求性能を満たし、 高運動量領域では~1 μm の優秀な分解能を持つ

バックグラウンドとピクセル占有率

- 崩壊点検出器における主要なBG: e⁺e⁻ ペアBG
 - ・e⁺e⁻ビームから放射されるγが対生成してe⁺e⁻のペアが大量発生
 - ・低い横運動量を持つ → 何度もセンサーに入ってくる

FPCCD VXDの ピクセル占有率の評価結果

Е _{см} (GeV)	最内層の 占有率 (%)
250	0.56
350	0.70
500	1.24
1000	12.75

1000 GeV のビームランでは占有率が高い。 現在解決策を検討中

Impact Parameter Resolution

ILC で要求される Impact Parameter Resolution

$$\sigma_{r\phi} = 5\mu \mathrm{m} \oplus \frac{10\mathrm{GeV/c}}{\mathrm{p}\cdot \sin^{3/2}\theta}\mu \mathrm{m}$$

検出器固有の 分解能

多重クーロン散乱による)
分解能の悪化を考慮	

レイヤー	位置分 (µm)	解能	ー度の 読み出 寄与す	しに るBX数
	CMOS	FPCCD	CMOS	FPCCD
0	2.8	1.4	90	1312
1	6.0	1.4	18	1312
2	4.0	2.8	180	1312
3	4.0	2.8	180	1312
4	4.0	2.8	180	1312
5	4.0	2.8	180	1312

 ▶ 要求性能を満たす
 ▶ 高Pでは ~ 1 µm の 優秀な分解能を持つ

ペアBGによる性能の悪化

VXD	tracking	ペアBG	b-tag purity [%] @ eff. 80 %		b-tag purity [%] c-tag purity [%] @ eff. 80 % @ eff. 60		c-tag puri @ eff. 60	ty [%] %
CMOS	現行版	×	52%	82.8	36%	56.4		
CMOS	現行版	0	down	30.4	down	20.0		
CMOS	FPCCDTF	×	42%	83.0	35%	58.1		
CMOS	FPCCDTF	0	down	40.8	down	22.8		
FPCCD	FPCCDTF	×	64%	85.5	45%	63.9		
FPCCD	FPCCDTF	0	down	21.5	down	18.7		

- ・ ペアBGが有る時も現行のトラッキングよりFPCCD TFの方が
 - ・ efficiency 80 % の b-tag の purity で 10% 優勢
 - ・ efficiency 60 % の c-tag の purity で 3% 優勢
- ペアBGがある時は CMOS より FPCCD の方が
 - ・ efficiency 80 %の b-tagの purity で 19 % 劣勢
 - ・ efficiency 60 %の c-tagの purity で 3% 劣勢

(FPCCD + FPCCDTFの場合)

再構成されたb-jetの中にあるトラックのP_T分布

red: 全トラック

フレーバータグの性能悪化は、
 大量のペアBGがb-jetの再構成に誤使用されるため

 トラックの要求: SIT hit >= 1 || TPC hit >= 10 || |cosθ| > 0.9
 ← 多くのペアBGトラックは SIT、TPCのヒットを持たない
 ← |cosθ| > 0.9 のトラックはSIT、TPCのアクセプタンスを考慮して SIT、TPCのヒットを要求しない

トラックの要求によりペアBGトラックが大幅に減少した

ペアBGが有る時のフレーバータグの性能評価2

 $Z^* \rightarrow b\overline{b}, c\overline{c}, q\overline{q} (q : u, d, s) @ 250 GeV$

- トラックの要求により悪化がある程度抑えられる
- 依然としてペアBGが有る場合はFPCCDはCMOSより劣勢

VXD	tracking	ペアBG	Track Req.	b-tag purity [%] @ eff. 80 %		b-tag purity [%] c-tag pur @ eff. 80 % @ eff. 60		ity [%] %
CMOS	std	×	×		82.8		56.4	
CMOS	std	0	×		30.4		20.0	
CMOS	FPCCDTF	×	×		83.0		58.1	
CMOS	FPCCDTF	×	0		82.9		57.4	
CMOS	FPCCDTF	0	×	37%	40.8	27%	22.8	
CMOS	FPCCDTF	0	0	recover	77.6	recover	49.4	
FPCCD	FPCCDTF	×	×		85.5		63.9	
FPCCD	FPCCDTF	×	0		84.1		65.5	
FPCCD	FPCCDTF	0	×	46%	21.5	23%	18.7	
FPCCD	FPCCDTF	0	0	recover	67.8	recover	√ 41.6	

- ・ トラックの要求による改善後もCMOSに比べFPCCDは劣勢
 - ・ efficiency 80 % の b-tag の purity が 10 % 劣勢
 - ・ efficiency 60 % の c-tag の purity が 8 % 劣勢