

日本物理学会第69回年次大会@東海大学湘南キャンパス

2014年3月27日

新崎ゆう子

石川明正 Jan Strube ^A藤井恵介 ^B兼村晋哉 ^C柳生慶 山本均 東北大 A:KEK B:富山大 C:國立中央大

■ 導入 ■ 研究概要

■ モデル依存の少ない解析

まとめ
 本日のまとめ
 今後の展望

2014/3/27

日本物理学会第69回年次大会@東海大学湘南キャンパス

3

- 2012年7月、標準模型最後の粒子である ヒッグス粒子が発見された
 - 今後はヒッグスセクターの構造(一重項、

二重項、三重項の追加)を決めるのが重要となる。

- ヒッグス三重項模型はニュートリノ質量を説明できるため有 望な模型
 - 複素三重項模型では新たに H, A, H[±], H^{±±}が追加される
 新たなヒッグス粒子は縮退している

■ ヒッグス三重項模型では、H[±]W[∓]Z結合がツリーレベルで可能

 $\mathcal{L}_{\rm eff} = g m_W f_{HWV} H^{\pm} W^{\mp}_{\mu} V^{\mu}$

 対生成(e+e-→H++H-)が不可能な重心系エネルギーの場合でも、e+e-→W+H+過程を用いてヒッグス三重項模型を探索することが可能
 この研究では、W粒子の反跳質量を測定することで、ヒッグ ス三重項模型での荷電ヒッグスの探索を行う

2014/3/27

日本物理学会第69回年次大会@東海大学湘南キャンパス

5

信号事象と背景事象

- 重心エネルギー Ecm = 250 GeV 積分ルミノシティ = 250 fb⁻¹
- 検出器 : ILD_01_v05 (DBD ver.)
- F_{HW7}=1, Georgi-Machacek model で可能

イベントサンプル イベント数 断面積 fb Sig. WH → jjtv 21k 83.4 46.2k 12M Di-jet evW →evij 110k 445 Zee →jjee 300 74k WW →jjlv 758 190k €_120 SM $WW \rightarrow jjjj$ 600 150k BG 467 120k ZZ →jjll $ZZ \rightarrow jjjj$ 402 100k ZZorWW → jjjj 140k 565 $Zh \rightarrow ffh$ 51k 205

- 偏極 : P(e+, e-) = (-30%, +80%) - 荷電ヒッグス質量 mн± = 150 GeV

2014/3/27

本来ならInclusive に Wのみを再構成し W の反 跳を見て模型依存が無い解析を行いたいが、今 W 回は荷電ヒッグスがτνに崩壊する場合を考える。 Wが hadronicに崩壊する際の反跳を見ることで 荷電ヒッグスの質量を計算し、荷電ヒッグスの 生成断面積の精度を評価する Durham algorithmを用いて、3本のジェットに なるまで粒子を(強制的に)再構成する 3本のジェットのうち χ^2 が最小になるように2 つのジェットからWを再構成する 荷電ヒッグスの質量(Wの反跳質量)を計算す る Wの4元運動量 Pw $m_{H^2} = \{ (E_{CM}, 0, 0, 0) - P_W \}^2 \}$ 重心エネ

 M_i : mass of jet pair m_W : mass of W(= 80.0GeV) σ_W : mass resolution(= 4.8GeV)

W生成角のカット

カット後の反跳質量分布図

2014/3/27

カットテーブル

	WH	Di-jet	evW→evjj	WW→jjlv	ZZ→jjll	others		
no cut	20366	6759925	65567	150352	89793	252065		
mw&mrec	12046	1154647	17299	32663	27146	20908		
pt	11125	20870	16079	29478	20478	7405		
Evis	10388	9209	9204	20572	18451	4703		
Wangle	9970	5233	8394	18837	17063	4500		
mrec	7424	1993	2876	6154	4535	1980		
S/N=C.00278→D.423 efficiency = 36.5% significance = 46.99 → 統計誤差 2.13% (Ecm250 GeV, 250fb ⁻¹) Significance = $\frac{N_{signal}}{\sqrt{N_{signal}+N_{bg}}}$								

モデル依存の少ない解析

2014/3/27

モデル依存の少ない解析

significance = 19.44 → 統計誤差 5.14% (Ecm=250GeV, 250fb⁻¹) 2014/3/27 日本物理学会第69回年次大会 @東海大学湘南キャンパス 14

本日のまとめ

ILCにおいてW粒子の反跳から荷電ヒッグスの質量を測定す ることにより、ヒッグス三重項模型の探索を行う可能性を検 討した。

- Ecm=250GeV,積分ルミノシティ=250fb⁻¹を想定
 荷電ヒッグス質量=150GeV,形状因子 FHWZ = 1, 荷電ヒッグスがTVに崩壊すると仮定
 - モデル依存→統計誤差 2.13% で測定可能
 - モデル依存少ない→統計誤差 5.14% で測定可能
 - Di-jet の peak は E_{CM} を変更することでずらすことが可能

今後の予定

- ▶ 解析の最適化
- 崩壊分岐比が大きいと期待されるH⁺ → W^{*}Z, WZ^{*} の解析
- m_H VS F_{HWZ}への制限
- 二重荷電ヒッグス対生成の解析

Back Up

ILC (International Linear Collider) 実験

- 電子陽電子衝突型 線形加速器
- 全長約 30 km(のちに50 km)
- 重心エネルギー √s = 250, 500・・・ GeVで稼働
- <u>偏極度を変更</u>することができる
- lepton lepton 衝突→<u>初期エネルギーが正確に</u>わかる
- ヒッグス粒子の性質の精密測定、新物理の探索

ILC加速器とILD検出器

モデル非依存の解析

前ページまでの解析で用いた

- Wの質量
- 反跳質量
- W production angle

のみで解析を行うことで、完全にWの情報のみから荷電ヒッグスを測定 できないか検証した。

	WH	di-jet	evW→evjj	WW→jjlv	ZZ→jjlv	others
no cut	20366	6759925	65567	150352	89793	252065
mw&mrec	12046	1154647	17299	32663	27146	20908
Wangle	10273	130848	12642	17917	14942	4708
Mrec	7782	130848	3762	7599	5503	1980

efficiency = 38.2% significance = 19.44 → 統計誤差 **5.14%**

2014/3/27