

Measurements of Top quark Mass, Width and Yukawa coupling near threshold at the ILC

14th May. 2014 @ AWLC 2014 @ Fermi Lab. Tomohiro Horiguchi

A. Ishikawa, K. Fujii¹, T. Suehara², Y. Kiyo³, Y. Sumino, H. Yamamoto Tohoku Univ., ¹KEK, ²Kyushu Univ. ³Juntendo Univ.

Contents

 \rightarrow Update of ttbar \rightarrow A_{FB} study σ_{tt} study -Measurements of m_{t} , Γ_{t} and y_{t}

– Measurements of Γ_{t} and α_{s}

σ_{tt} (Measurements of "m_t", "Γ_t" and "y_t")

AWLC 2014 in CHICAGO

σ_{tt} Measurement

Since near the threshold of top pair production ($\sqrt{s}=2m_t$), the energy dependence of σ_{tt} is large, measuring the σ_{tt} precisely and fitting it, fundamental parameters are determined.

Owell-defined mass

 $\sigma_{tt} \propto f(\sqrt{s, m_t}, \Gamma_t, \alpha_s, y_t, m_h)$ Here potential subtracted(PS) mass Phys.Lett. B434 (1998) 115-125

Invariant mass from three jets is hard to interpret to theoretical favored running mass.

000000000

adronization

Simulation set up

Top quark mass	174 GeV
\sqrt{s} (threshold scan)	<u> 341 - 350GeV (every 1 GeV, 10 points)</u>
<u>Polarization</u>	$p(e^+, e^-) = (-30\%, +80\%), (+30\%, -80\%)$ (In this talk, I call them "Right" and "Left")
Integrated Luminosity	5 fb ⁻¹ (each \sqrt{s} & pol, total 100fb ⁻¹)
Event Generation	Physsim (LO ,QCD enhancement, on ISR/ beamstralung/beam energy spread)
Simulation	ILD_01_v05 (DBD ver.)

Signal and background

Top Quark Reconstruction (6-Jet & 4-Jet)

Reconstruction method	6-Jet	4-Jet
Isolated Lepton(l _{iso}) finding using cone energy cut (cosθ _{cone} > 0.96, P _{track} > 15 GeV, E _{cone} < 10 GeV)	# of <i>l_{iso}</i> = 0	# of <i>l_{iso}</i> = 1
Jet clustering using Durham algorithm	6jets	4jets
Extraction of 2 b-likeness	s jets	
Reconstruction of top quark pair and finding the best candidate by χ ² from invariant mass	(b+q+q') × 2	(b+q+q') & (b+l _{iso} +v)
$\chi_{6-\text{Jet}}^2 = \frac{(m_{3j^{\text{a}}\text{reco.}} - m_t)^2}{\sigma_t^2} + \frac{(m_{3j^{\text{b}}\text{reco.}} - m_t)^2}{\sigma_t^2} + \frac{(m_{2j^{\text{b}}\text{reco.}} - m_t)^2}{\sigma_t^2}$	$\frac{\sigma_{\rm j^a reco.}^2 - m_w)^2}{\sigma_w^2} + \frac{1}{\sigma_w^2}$	$\frac{(m_{2j^{\rm b} \rm reco.} - m_w)^2}{\sigma_w^2}$
$\chi_{4-\text{Jet}}^{2} = \frac{(m_{3\text{jreco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{j\text{l}\nu\text{reco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{2\text{jreco.}} - m_{t})^{2}}{\sigma_{t}^{2}$	$\frac{1}{\sigma_w^2}$	

7

Selection Table @ √s= 350GeV

Table : 6-Jet Left handed

 $\int \mathcal{L}(t)dt = 5(\text{fb}^{-1}) \quad S = \frac{N_{Sig}}{\sqrt{N_{Sig} + N_{BG.}}}$

(e+,e-)=(+30,-80%)	tt6j	tt4j	tt2j	SM bkg.	S _{6i}	ε _{6i}
Generated	1643	1583	381	0.13M	4.4	100
# of lepton = 0	1590	353	18	0.11M	5.0	96.8
btag > 0.09 × 2	1499	330	17	19336	10.3	91.2
Thrust<0.825	1439	285	11	2447	22.3	87.6
Evis>300 GeV	1424	61	0	1092	28.0	86.6
m _t >107 GeV × 2	1383	37	0	492	31.6	84.1
# of pfos>84	1376	33	0	442	32.0	83.8
y45> 0.0012						
y56 >0.0006	1362	31	0	392	32.2	82.9
Sphericity>0.22	1347	24	0	329	32.7	82.0

√s=350 GeV	S _{n-Jet}	ε _{n-Jet}
6-Jet (e+,e-)=(-30, +80%)	23.5	84.6
4-Jet (e+,e-)=(+30, -80%)	31.0	66.3
4-Jet (e+,e-)=(-30, +80%)	21.9	68.2

toyMC to extract m_t, Γ_t, y_t

Preparing the Templates:

- Theoretical σ_{tt} is convoluted using luminosity spectrum.
- Making the template by changing ${m_t}^{\text{PS}}$ and Γ_t / Fixed α_s (=0.12)

\succ Fitting to σ_{tt} :

new

- Since the measurement of δy_t is extracted from normalization of σ_{tt} , the normalization is used for σ_{tt} fit.
- By using the templates, σ_{tt} s are fitted to extract y_t, m_t and Γ_t simultaneously.

Fit Result

Stat. Error	6-Jet			4-Jet		
(m _t , Γ _t :MeV/y _t :%)	m _t ^{PS}	Γ _t	y t	m _t ^{PS}	Γ _t	y t
Left(50fb ⁻¹)	47	65	9.6	52	71	11
Right(50fb ⁻¹)	68	94	14	75	106	16
Left (50fb ⁻¹) + Right(50fb ⁻¹)	39	53	7.9	43	59	9.1

Combined ALL

 m_t^{PS}(GeV)
 Γ_t(GeV)
 y_t

 172±0.029
 1.4±0.039
 5.9 %

Systematic err.

□ Theoretical err.

$$\delta m_t^{20}$$
 100 MeV

Luminosity spectrum δm_t~80MeV

Ph.D thesis F. Gournaris (2009)

$$\boxed{\bigcirc PS \rightarrow \overline{MS}}$$

 $m_t^{\overline{MS}} \sim m_t^{PS} - \frac{4}{3\pi} (m_t^{PS} - 20) \alpha_s + ...$
 $m_t^{\overline{MS}} = 163.800 \pm 0.028 \text{ (stat.)(GeV)}$

Comparison of (2+1) param fits and 3 param fits

previous result : <u>**2D fit** of m_t and Γ_t </u>, y_t is measured individually. New result : **3D fit** of m_t , Γ_t and y_t .

	(2 + 1) param fit	3 param fit
m _t	19 MeV	29 MeV
۲ _t	38 MeV	39 MeV
y _t	4.6%	5.9%

	Correlation coeffic	ients
	(2 + 1) param fit	3 param fit
m _t vs Γ _t	0.52	0.57
m _t vs y _t	-	0.72
Γ _t vs y _t	-	0.33

$\begin{array}{l} A_{FB} \\ \text{(Measurement of "}\Gamma_{t}", "\alpha_{s}") \end{array}$

A_{FB} near ttbar threshold

★Forward backward asymmetry of top quark(A_{FB})

- **□** Since top has large Γ_t , we can measure A_{FB} by interfering the resonance of Sand P- wave.
- **□** The level split which is separation of two resonances depends on α_s .

$$A_{FB} \equiv \frac{N(\cos\theta_{top} > 0) - N(\cos\theta_{top} < 0)}{N(\cos\theta_{top} > 0) + N(\cos\theta_{top} < 0)}$$
Forward
$$e^{-t} \theta_{top}$$

$$e^{+}$$
Backward
$$f^{-t} \theta_{top}$$

$$e^{-t} \theta_{top}$$

Analysis method and MC Set up

AWLC 201

Set up

BKG. : SM bkg.

Vs = 346 GeV (between S- and P- wave) $\mathcal{L} = 50 \text{fb}^{-1} (e+,e-) = (+0.3, -0.8)$ $\mathcal{L} = 50 \text{fb}^{-1} (e+,e-) = (-0.3, +0.8)$

OSemi-leptonic side

Since charge tag of jets is too difficult, isolated lepton is used for ID of top or anti-top.

OHadronic side

Since leptonic decayed top quark has missing 4-vector, hadronic decayed one is used to determined angle of top quark.

14

Reconstruction of top quark

Background suppression

For maximizing the significance (S_{top}), bkg. are rejected.

$$S_{top} = \frac{N_{signal}}{\sqrt{N_{signal} + N_{bkg.}}}$$

of PFOs is used except top tagging cut (previous page).

Left 50fb ⁻¹	tt4j	tt6j	tt2j	SM bkg.	S _{top}	Efficiency
Gen.	12619	13101	3039	1 M	12.2	100
# of I _{iso} = 1	9648	418	909	0.3M	16.9	76.5
cosθ _{bW} <-0.7	8989	397	834	0.2M	18.4	71.2
X ² <10	6856	65	164	13134	48.2	54.3
cosθ _{bb} <0.8	4881	3	6	271	67.9	38.7
# of PFOs > 50	4872	3	4	182	68.5	38.6

Γ_t and α_s measurement

In the future when ILC will be built, theorists will calculate it.

 $\mathcal{L} = 100 \text{ fb}^{-1} \ \delta\Gamma_{t} = 290 \text{ MeV}, \ \delta\alpha_{s} = 0.015$

Summary

$\succ \sigma_{tt}$ measurement (mass, width, yt)

- Simultaneous fit to extract m_t , Γ_t and y_t was performed.
- Integrated luminosity : 5 fb⁻¹ × 20 points, total 100 fb⁻¹
- We can measure at δm_t^{PS} = 29 MeV, $\delta \Gamma_t$ = 39 MeV and δy_t = 5.9 % with 3D fit.

➤ A_{FB} measurement

- Near ttbar threshold, A_{FB} measurement is sensitive to Γ_t and $\alpha_s.$
- At Vs=346 GeV where A_{FB} is maximum, δA_{FB} of top quark were measured and $\delta \Gamma_t$ and $\delta \alpha_s$ are estimated.
- If we accumulate \mathcal{L} = 100 fb⁻¹, we can measure at Γ_t = 290 MeV and $\delta \alpha_s$ = 0.015.
- Theoretical predictions of A_{FB} vs Γ_t and α_s for polarized case exist but not calculated numerically.

backup

Fit - convolution -

OWe must consider "Beam effects" around threshold.

