Precision Measurements of Radiative *B* Meson decay $B \rightarrow X_s \gamma$ with a Semi-inclusive Reconstruction Method

準包括的再構成法を用いた $B \rightarrow X_s \gamma$ の精密測定

齋藤 智之(素粒子実験)

2014/01/30 博士論文審查会

目次

- 1, $B \rightarrow X_s \gamma$ と測定手法
- 2, Belle 実験
- 3, MCサンプル作成
- 4, 信号再構成
- 5, 背景事象除去
- 6, 信号抽出手法
- 7, 系統誤差
- 8, 140 fb⁻¹のデータを用いた解析
- 9, 全データを用いた解析と結果
- 10, 結論

 $b \rightarrow s\gamma$ 遷移

- LHCでの新物理の直接測定で何の兆候も見えない。
 - → 間接測定がますます重要。
 - $b \rightarrow s\gamma$ 遷移
- ▶ 標準理論ではツリーレベルが禁止(Flavor Changing Neutral Current)で、ループダイアグラムで生じる。
- ▶新物理が予言する重い新粒子がループ中に現れることが期待。
- ▶ 理論計算が精度よくでき新物理探索に有用。

崩壞分岐比測定手法(Inclusive崩壞)

2013/01/30

博士論文審查会

崩壞分岐比測定手法(Semi-inclusive手法)

● Inclusive法ではX_sの崩壊モデルの不定性を抑制するための対策によって手法が2つある。

 $B \rightarrow X_{\gamma}$ 崩壊分岐比の現状

Belle実験でSemi-inclusive手法を用いた研究を行う。

2013/01/30

Belle 検出器

特徴:高い運動量測定精度&優れた粒子識別

- 崩壊点検出器(σ~75 μm)
 - 半導体崩壊点検出器
- 予新校出器(σ/p_t ~ 0.5 %)
 - ・ドリフトチェンバー(CDC)
 - 半導体崩壊点検出器
- **・カロリメータ(**σ/*E* ~1.6 %)
 - ・Csl電磁カロリーメータ
- ▶ 粒子識別

 K[±] / π[±] 識別: CDC(dE/dx), チェレンコフカウンタ, 飛行時間測定器

→ 88%のK 識別、8.5%のπの誤識別

- 電子 識別: CDCとCsIカロリメータで測定したE/p 等 -> 92 %の識別
- *K_L*/μ 識別:最外層の鉄とRPCを積層した検出器 -> 90 %のμ識別

MCサンプル作成

 $B \rightarrow X_{s} \gamma \mathcal{O} MC \mathcal{T} \mathcal{T} \mathcal{U}(M_{X_{s}} \mathcal{G} \pi)$

15000

5000

- - $M_{Xs} < 1.15 \text{ GeV/c}^2$
 - … K* 共鳴支配的(よく理解されている) 1000
 - M_{Xs} > 1.15 GeV/c²
 - … 様々な終状態(よく理解されていない)
 - *M_{Xs}*分布の形
 - Kagan-Neubertモデルを使用
 - next-to-leading order
 - 2つの入力変数(m_b、 µ²)
 - Belleの以前の結果(Full inclusive, 2009)-0.02 とBest fitを使用

 M_{X_s} 分布

Kagan-Neubert

モデル

 $B \rightarrow X_{s} \gamma MC \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} (\mathcal{N} \mathbb{F} \mathbb{D} \mathcal{T} \mathcal{L} \mathbb{T} \mathbb{T})$

 $B \rightarrow X_{s} \gamma O 終 状態: クォークのまま出てこ$ れないため、ハドロンを形成(ハドロン化)

X.終状態内訳(%)(MC)

 $K_{(s)}\pi$

 $K_{(s)}2\pi$

 $K_{(s)} \Im \pi$

 $K_{(s)}4\pi$

 $K_{(s)}2\pi^{0}(\pi,2\pi)$

 $K_{(s)}\eta(\pi, 2\pi)(\eta \rightarrow \gamma\gamma)$

▶ Pythiaで生成

3K $K\omega(\omega \rightarrow \pi^0 \gamma)$ $K\eta'(\eta' -> \rho^0 \gamma)$ バリオン $K_L \Xi - F$ するため、実データを用いた較正が必要。 その他

2013/01/30)13/01/3(
------------	-----------

15.1

11.6

9.0

5.1

5.9

2.2

1.3

0.7

0.5

1.6

27.2

19.8

本研究のポイント

本研究の特徴 ▶統計量は十分(生成数:5×10⁵事象) ▶系統誤差が支配的:X_sの崩壊モデル - M_{Xs}分布モデルの誤差 - X_s崩壊のハドロン化モデルの誤差 - [™] 中身

系統誤差抑制のためには、

MCのモデルをデータを使い較正し誤差の抑制が必要
 信号数少&背景事象多の高M_{Xs}領域で高いSignificance

 M_{X_s} 分布

00

0.5

1 1.5

2

2.5

低エネルギ

背景事象

3 3.5

Generated MXs (GeV)

4 4.5

信号再構成

粒子選択(高エネルギーγ)

● γ 信号の選択

- 高エネルギーγは特徴的信号
- ► 1.8 < *E_γ* < 3.4 GeV (CM系)
- ► バレル領域のみ(33<0<132°)
- ▶シャワーの形
- *π*⁰/ *η* veto
 - 主な背景事象 $\pi^{\rho}(\eta)$ からの γ を排除
 - 2次元PDFでπ⁰(η)からの γ である 確率を定義
 - 信号候補 γ₁とその他の γ₂を組んだ質量 10²
 - γ2のエネルギー
 - 75%の信号を保持し、
 π⁰からの γ 背景事象を20%に低減

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 π^0 probability

粒子選択 (K^{\pm} , π^{\pm} , K_s , π^0 , η)

X。再構成 (Semi-inclusive 法)

- **Semi-inclusive** 法: X_s をK, K_s , π , π^{0} , η 用いて再構成
- ▶ 理想は全ての終状態を再構成。 しかし、
 - 分岐比小
 - 再構成効率小
 - 背景事象多
 - により困難。
- ► 38 終状態を再構成
 X_sの終状態の56%をカバー。
 K_sを含むモードと同数の K_Lモードを含めると69%。

	冉構成した終状態							
Kπ	$K\pi$	$K_s\pi$	$K\pi^{ m ho}$	$K_s\pi^{ m ho}$				
$K2\pi$	$K\pi\pi$	$K_s\pi\pi$	$K\pi\pi^{ m 0}$	$K_s\pi\pi^0$				
$K3\pi$	Κπππ	$K_s\pi\pi\pi$	$K\pi\pi\pi^{0}$	$K_s\pi\pi\pi^{ m 0}$				
$K4\pi$	Κππππ	$K_s\pi\pi\pi\pi$	$K\pi\pi\pi\pi^{0}$	$K_s\pi\pi\pi\pi^0$				
21	KKK	KKK _s						
3K	$KKK\pi$	$KKK_s\pi$	$KKK\pi^0$	$KKK_s\pi^0$				
	Κη	$K_s\eta$	$K\eta\pi$	Ks $\eta\pi$				
Κη	$K\eta\pi^{ m ho}$	$K_s\eta\pi^0$	$K\eta 2\pi$	$K_s \eta 2 \pi$				
	$K\eta\pi\pi^{ m 0}$	$K_s\eta\pi\pi^0$						
2.0	$K\pi^{ m ho}\pi^{ m ho}$	$K_s \pi^0 \pi^0$	$K\pi\pi^{0}\pi^{0}$	$K_s\pi\pi^{ ho}\pi^{ ho}$				
$2\pi^{\circ}$	$K\pi\pi\pi^{0}\pi^{0}$	$K_s\pi\pi\pi^0\pi^0$						

B 中間子再構成

博士論文審查会

背景事象の除去法

主な背景事象

- ▶ B 中間子がD中間子にいく崩壊
- ► e⁺e⁻→qq事象

D 中間子崩壊由来の背景事象抑制:D veto

R

- D 中間子(+π⁰)を含む崩壊からの背景事象が多く混入。
 - ►主にB→Dρ(分岐比が10²倍以上)
 - ▶ 信号領域にピークを作るため、 信号と間違える。

D veto

X_sの再構成に使用した粒子を組み合わせ、 Dの質量に近い事象を排除。

4000 量 (GeV 3500 ▶ *M_x*,>2.0 GeVでDの質量 3000 2500 (1835-1895MeV)を除去。 笸, 2000 1500 → 信号を90%保持し、 1000 Dの背景事象を23%に低減。 0.8 0.8 500 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 2.2 2.4 2.6 2.8 D mass(GeV) 質量(GeV

qq 背景事象の抑制(多変数解析)

● 最大の背景事象は軽いクォークjet事象 $(e^+e^- \rightarrow qq (q=u, d, c, s))$

- ► ニューラルネット(NeuroBayes)
 による多変数解析
 --> 入力変数の相関を考慮し、
 分離能力を最適化。
 - 入力変数:12個(主にイベント形状)
 - Fisher discriminant (ルジャンドル多項式を用いて 評価したイベント形状変数)
 - B中間子の飛行方向
 - Thrust
 - Sphericity
 - Aplanarity
 - 逆側のBのフレーバー情報
 - $\Delta E \mathcal{O}$ Likelihood

2013/01/30

qq 背景事象の抑制(トレーニングとカットの最適化)

B 中間子の最適候補選択と背景事象除去結果

 ● B 中間子の最適候補選択(Cross-feed 背景事象の抑制)
 ▶ 38 終状態を同時に再構成しているため、1イベント当たり 多くの B 中間子候補(Cross-feed)が存在。

► ニューラルネット出力が最も1に近い事象を選択
 --> 信号を85%保持し、Cross-feedを42%に低減。

● 背景事象除去結果

▶ Significanceが18→58に向上。(2<*M_{Xs}*<2.8 GeV/c²: 4→10)

背景事象除去後の事象数((M _{bc} >5.27 GeV, M _{Xs} <2.8 GeV)						
	Event selection	D veto	$q\overline{q}$ suppression	BCS		
Signal	30356	27137	14068	11824		
Cross-feed	90940	64938	13096	5563		
$q\overline{q}$ BG	2545069	1837720	42195	15226		
$B\overline{B}$ BG	231770	118749	20023	8976		
Significance	17.8	19.0	47.1	58.0		

信号抽出方法

信号抽出方法

- M_{bc}分布をフィットして信号を抽出
 - ► M_{Xs}<2.8 GeV/c² (M_{Xs}>2.8 GeV/c²は信号数小、BG多で厳しい)
 - Unbinned Maximum Likelihood Fit
 - ▶ 5つのPDFを組み合わせる。
 - Signal PDF(赤実線)
 - Signal Cross-feed PDF : 信号事象からの背景事象(赤点線)
 - Peaking BG PDF: 信号領域にピークを持つ背景事象(緑実線)
 - Non-peaking BG PDF: ピークを 持たないB 崩壊からの背景事 象 (緑点線)
 - qq 背景事象 PDF(水色)
 - ▶ PDFはできる限りデータを もとに作成。

次ページから各PDFを説明する。

SignalとCross-feedのPDF

Peaking, Non-peaking, qq BG PDF

Peaking BG PDF

- ▶ガウス関数
- π⁰/η vetoで排除された
 データを用いて数と形
 を固定。

Non-peaking BG PDF

- ▶ Argus関数
- ▶ 形と数いずれも動かす。

● qq BG PDF ▶ 傾きパラメータを修正したArgus関数

▶ Y(4S)共鳴から60MeV下のデータで 形と数を固定。

●データで信号領域を測定する前に系統誤差を見積もる。

- ▶背景事象除去の系統誤差
 - *D* veto
 - qq 背景事象除去
- ► M_{Xs}分布の形の系統誤差

2013/01/30

qq 背景事象抑制の系統誤差

● qq 背景事象抑制の系統誤差はコントロールサンプル $B \rightarrow D\pi$ で評価。

▶ クリーンかつ十分な量のサンプル。

► Bからの π を信号の γ 、Dを X_s とみなす。

► コントロールサンプルでMCとデータの効率差から

3.0%の系統誤差とする。

2013/01/30

M_{Xs}分布の形の系統誤差

) MCのM_x,分布(>1.15GeV)の形は Kagan-Neubertモデルで生成。 ▶ Belle (Full-inclusive, 2009)の結果と Best fitのパラメータを使用。 --> これらを動かして結果の差を 系統誤差とする。 系統誤差:(+3.3-8.0)% Events/20MeV ▶結果は分布の形に敏感。 ▶ 避けるためには形の情報を使わず、 M_{x_s} を細かく区切った信号数の評価が必要。 → データを使って検討する。

ここまでの系統誤差まとめ

Source			
Number of $B\overline{B}$		± 1.37	
Detector response	γ detection	± 2.00	
	X_s particles $(K, K_s, \pi, \pi^0, \eta)$ reconstr	uction ± 1.29	
	K/π separation	± 1.79	
Background rejection	π^0 veto	± 0.30	
	η veto	± 0.60	
	D veto	± 0.61	
	$q\overline{q}$ suppression	± 3.04	
	Best candidate selection	± 1.16	
M_{bc} PDF	Signal PDF Signal Cross food PDF	信号領域のデータ	
	Peaking Background PDF	を用いて評価	
	Non-peaking part from $q\overline{q}$ background	nd	
Signal modeling	M_{X_s} shape	+3.26 - 7.96	
	Hadronization	1000000000000000000000000000000000000	長大の誤差
	$K^* - X_s$ transition		いけいこわち
	Extrapolation to $E_{\gamma}^* > 1.6 \text{ GeV}$	どけいていた。 +r	うみり しょじつ
Total		tl	1年19、19

140 fb⁻¹のデータ解析

140 fb⁻¹(全データの1/5)は以前のCPの研究ですでに解析済み。

- MCのハドロン化モデルの較正が可能か検証
- 2つの崩壊分岐比算出法による結果 を比較する。
 - ► *M_{Xs}*領域全体(*M_{Xs}*<2.8 GeV/c²)で評価
 - ► M_{Xs}を0.1 GeV/c²刻みに評価

← M_{Xs}分布の大きな系統誤差対策

ハドロン化モデルの較正

- データとMCの各崩壊モードを比をチェックし、較正する。
 - ► MCの*K*π、*K*2πの比が大きくずれている。
 - ▶ Pythiaのハドロン化モデルのパラメータを調節し較正。
 - ▶ 較正結果: χ² = 185 → 22へ改善。較正は成功!

				データとの差
	Fraction in Data	Fraction in MC ^{FX}	Fraction in MC	
各終状態の比(%)		before calibration	after calibration	比の誤差
$K\pi$ without π^0	5.06 ± 0.89	11.7 (+7.5)	4.76 (-0.3)	
$K\pi$ with π^0	2.53 ± 0.44	6.16 (+8.2)	$2.44 \ (+0.5)$	
$K2\pi$ without π^0	17.4 ± 1.37	13.6(-2.8)	14.7 (-2.0)	
$K2\pi$ with π^0	31.6 ± 2.47	16.0(-6.3)	22.4 (-3.7)	
$K3\pi$ without π^0	7.00 ± 1.62	5.66(-0.8)	5.98 (-0.6)	
$K3\pi$ with π^0	15.2 ± 4.01	15.5 (+0.1)	21.5 (+1.6)	
$K4\pi$	11.6 ± 3.80	10.5 (-0.3)	9.36 (-0.6)	
$K2\pi^0$ with at most two π	2.91 ± 9.70	7.72 (+0.5)	7.72 (+0.5)	
$K\eta$ with at most two π	4.68 ± 1.59	4.84(+0.1)	4.90 (+0.1)	
$3K$ with at most one π	1.93 ± 0.61	2.63(-0.7)	1.76(-1.3)	

2013/01/30

崩壊分岐比算出手法:M_{Xs}領域全体で評価

● *M_{Xs}*領域全体で評価 : *M_{Xs}<2.8* GeV/c²の事象をまとめて フィットし、崩壊分岐比を算出。

- ▶ 信号数:2557±107
- ► BR(B→X_s γ) = (信号数)/(B中間子の数×再構成効率)
 = (3.69±0.16)×10⁻⁴ (M_{xs}<2.8 GeV、統計誤差)</p>

崩壊分岐比算出手法:M_{Xs}ビン毎に評価

2つの算出手法の比較

● 2つの手法の比較

- ► M_{Xs}領域全体で評価: (3.93±0.17)×10⁻⁴

これらの手法の違いはMCのM_{Xs}分布の形の情報を使うか否か。

- データとMCのM_{Xs}分布の形の比較
 - ▶ 1.2<*M_{Xs}*<1.5 GeV/c²で大きなずれ
 - M_{X_s} 分布をMCで再現するのは困難

→ M_{Xs} ビン毎の評価を採用

全データ解析

● ハドロン化モデルの較正

● 崩壊分岐比の算出

ハドロン化モデルの較正(1/3)

● データとMCの各崩壊モードを比をチェックし、較正する。

- ► MCの*K*π、*K*2πの比が大きくずれている。
- ▶ Pythiaのハドロン化モデルのパラメータを調節し較正。
- ▶較正結果: χ² = 831 → 52
- ▶ ずれが大きい終状態も見られる。

		Full Data	Default	Calibrated	<u> データとの差</u>
	各終状態の比(%)	$(1.15 < M_{X_s} < 2.8)$	MC 蚁	L MC	比の誤差
	$K\pi$ without π^0	4.20 ± 0.25	10.3 (+17)	4.61 (+1.2)	
	$K\pi$ with π^0	2.10 ± 0.13	5.42(+19)	2.38(+1.6)	
	$K2\pi$ without π^0	14.5 ± 0.52	12.9(-3.1)	15.7 (+2.4)	
	$K2\pi$ with π^0	24.0 ± 0.74	15.2(-12)	24.0(-0.0)	
	$K3\pi$ without π^0	8.34 ± 0.75	5.90(-3.3)	4.58(-5.0)	
	$K3\pi$ with π^0	16.1 ± 1.76	15.7 (-0.2)	19.2 (+1.8)	
	$K4\pi$	11.1 ± 2.80	12.3 (+0.4)	10.2 (-0.3)	
K	$2\pi^0$ with at most two π	14.4 ± 3.47	14.4 (-0.0)	11.6(-0.8)	
j	$K\eta$ with at most two π	3.18 ± 0.77	4.92(+2.3)	5.35(+2.8)	
	$3K$ with at most one π	2.00 ± 0.30	2.98(-3.3)	2.31(-1.0)]
	$3K$ with at most one π	2.00 ± 0.30	2.98(-3.3)	2.31 (-1.0)	

ハドロン化モデルの較正(2/3)

● 各*M_{xs}*領域でMCのハド
 □ン化モデルをデータと
 比較

▶ 多くの終状態で2σを超 える差がある.

→ Pythiaのパラメータに よる 微調整は困難。

▶ 2つ目の較正を適用

各終状態の比(%)

$1.15 < M_{X_s} < 1.5 \ { m GeV/c^2}$			1.5	$5 < M_{X_s} < 2.0$	$0 \mathrm{GeV/c^2}$
Mode	Data	MC	Mode	Data	MC
1	9.51 ± 1.42	14.5 (+6.4)	1	2.39 ± 0.35	2.91 (+1.5)
2	5.32 ± 0.31	7.50(+7.1)	2	1.19 ± 0.18	1.49(+1.7)
3	25.7 ± 0.82	21.6(-5.0)	3	13.6 ± 0.76	15.0 (+1.9)
4	44.8 ± 1.51	36.5 (-5.5)	4	19.7 ± 1.06	22.0 (+2.2)
5	$0.91 {\pm} 0.52$	0.95 (+0.1)	5	11.3 ± 0.94	6.58(-5.0)
6	8.06 ± 2.17	14.9(+3.1)	6	21.7 ± 2.39	23.7 (+0.8)
7	0.30 ± 0.50	0.52 (+0.5)	7	8.80 ± 2.70	12.2 (-1.2)
8	2.52 ± 2.52	2.51 (+0.0)	8	14.7 ± 2.08	8.20 (-3.1)
9	1.71 ± 0.43	0.93 (-1.8)	9	5.00 ± 1.27	5.78 (+0.6)
10	0.00 ± 0.00	0.01 (+0.0)	10	1.64 ± 0.24	1.29(-1.5)
2.0	$0 < M_{X_s} < 2.4$	${ m GeV/c^2}$	2.4	$< M_{X_s} < 2.8$	$3 { m GeV/c^2}$
Mode	Data	MC	Mode	Data	MC
1	1.21 ± 0.64	1.15(-0.1)	1	0.46 ± 0.65	0.90 (+0.7)
2	0.60 ± 0.32	0.60 (+0.0)	2	0.23 ± 0.32	0.49 (+0.8)
3	7.06 ± 1.37	9.64(+1.9)	3	$3.84{\pm}2.15$	8.20 (+2.0)
4	8.93 ± 2.63	13.9(+1.9)	4	8.49 ± 4.03	11.8 (+0.8)
5	12.1 ± 2.53	8.33 (-1.5)	5	12.7 ± 5.20	8.18 (-0.9)
0					
6	16.1 ± 5.65	22.6(+1.1)	6	3.27 ± 12.8	21.2 (+1.4)
6 7	$\frac{16.1 \pm 5.65}{28.0 \pm 9.10}$	$\begin{array}{c} 22.6 \ (+1.1) \\ 16.5 \ (-1.3) \end{array}$	6 7	3.27 ± 12.8 3.10 ± 26.7	21.2 (+1.4) 20.4 (-0.7)
$ \begin{array}{c} 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} 16.1 \pm 5.65 \\ 28.0 \pm 9.10 \\ 15.5 \pm 15.5 \end{array}$	$\begin{array}{c} 22.6 \ (+1.1) \\ 16.5 \ (-1.3) \\ 18.5 \ (+0.4) \end{array}$	6 7 8	3.27 ± 12.8 3.10 ± 26.7 53.1 ± 28.7	$\begin{array}{c} 21.2 \ (+1.4) \\ 20.4 \ (-0.7) \\ 20.2 \ (-1.2) \end{array}$
$ \begin{array}{r} 6\\ 7\\ 8\\ 9 \end{array} $	$ \begin{array}{r} 16.1 \pm 5.65 \\ 28.0 \pm 9.10 \\ 15.5 \pm 15.5 \\ 6.82 \pm 3.69 \end{array} $	$\begin{array}{c} 22.6 \ (+1.1) \\ 16.5 \ (-1.3) \\ 18.5 \ (+0.4) \\ 6.16 \ (-0.2) \end{array}$	6 7 8 9	3.27 ± 12.8 3.10 ± 26.7 53.1 ± 28.7 10.6 ± 8.19	$\begin{array}{c} 21.2 \ (+1.4) \\ 20.4 \ (-0.7) \\ 20.2 \ (-1.2) \\ 5.89 \ (-0.6) \end{array}$

直接較正

● 直接較正

- ▶ MCの各終状態の比を直接調整しハドロン化モデルを較正する。
- ▶ 較正には以下のScale factorを使用。

	Scale factors (Data/MC)											
INIOde	1.15<	<mx< td=""><td>s<1.5</td><td>1.5<</td><td>MXs</td><td>s<2.0</td><td>2.0<</td><td>MXs</td><td><2.4</td><td>2.4<</td><td>ИXs</td><td><2.8</td></mx<>	s<1.5	1.5<	MXs	s<2.0	2.0<	MXs	<2.4	2.4<	ИXs	<2.8
Kπ w/o π ⁰	0.66	±	0.10	0.82	<u>+</u>	0.12	1.05	<u>+</u>	0.56	0.51	\pm	0.72
Kπ w/ π ⁰	0.71	±	0.04	0.80	±	0.12	1.00	±	0.53	0.47	±	0.65
K2π w/o π ⁰	1.19	±	0.04	0.91	±	0.05	0.73	±	0.14	0.47	±	0.26
K 2π w/ π^0	1.23	±	0.04	0.90	±	0.05	0.64	±	0.19	0.72	±	0.34
K3π w/o π ⁰	0.96	±	0.55	1.72	±	0.14	1.45	±	0.30	1.55	±	0.64
K 3π w/ π^0	0.54	±	0.15	0.92	<u>+</u>	0.10	0.71	±	0.25	0.15	±	0.6
Κ4π	0.58	±	0.96	0.72	±	0.22	1.70	±	0.55	0.15	±	1.3
$K2\pi^0$	1.00	±	1.00	1.79	±	0.25	0.84	±	0.84	2.63	±	14.2
Κη	1.84	±	0.46	0.87	±	0.22	1.11	±	0.60	1.80	±	1.39
3K	0.00	±	0.00	1.27	<u>+</u>	0.19	2.54	<u>±</u>	0.77	3.97	±	2.73

► *M_{Xs}*>2.0 GeVでのK2π⁰(π, 2π)の比の誤差が大きい。

2π⁰モードの較正

● データから得たK2π⁰(π, 2π)モードの比の精度をチェック。

M_{bc} of K2 $\pi^0(\pi, 2\pi)$ modes

- *M_{Xs}*>2.0 GeVで2π⁰ モードの信号測定は困難。
 → 較正に使うべきではない。
- ► M_{Xs} >2.0 GeVで2 π^0 モードの比はMCを信じる。
- ▶ 系統誤差の評価では +100%-50% 比を変化させる。

崩壞分岐比

▶ 統計誤差はM_{Xs} > 2.2 GeVが支配的。
 ▶ BR(B→X_sγ) = (3.51±0.17)×10⁻⁴

(M_{Xs}<2.8 GeV/c²、統計誤差のみ)

M _{Xs} の各ビンの分	<mark>う岐比</mark>
$M_{X_s} \operatorname{bin}(\mathrm{GeV/c^2})$	$\mathcal{BR}(10^{-6})$
0.6-0.7	-0.1 ± 0.1
0.7-0.8	0.3 ± 0.1
0.8-0.9	$19.8 {\pm} 0.5$
0.9-1.0	15.7 ± 0.5
1.0-1.1	2.9 ± 0.3
1.1-1.2	4.8 ± 0.5
1.2-1.3	18.7 ± 0.8
1.3-1.4	21.8 ± 1.0
1.4-1.5	21.2 ± 1.0
1.5-1.6	22.0 ± 1.4
1.6-1.7	$22.4{\pm}1.1$
1.7-1.8	24.8 ± 1.4
1.8-1.9	26.7 ± 2.2
1.9-2.0	26.3 ± 2.9
2.0-2.1	23.3 ± 3.1
2.1-2.2	21.0 ± 2.6
2.2-2.4	40.3 ± 7.2
2.4-2.6	27.9 ± 8.6
2.6-2.8	11.5 ± 11
Total	351 ± 17

X。の崩壊モデル系統誤差

残りの系統誤差を見積もる。

- ハドロン化モデル
 - ►各モードの比を±1σ、またはデータの比に合わせたときの結果の差を系統誤差とする。
 - ▶ 系統誤差:6.7%
- 再構成していないモードの影響
 - ▶ 再構成しているモード: 76.4 % (1.15<*M_{Xs}*<2.8 GeV/c²)
 - ►ハドロン化モデルがデータから大きくずれない範囲で Pythiaのパラメータを動かし、そのときの結果のずれを 系統誤差とする。

▶ 系統誤差: 1.6 %

 $B \rightarrow X_{y}$ の崩壊分岐比測定結果

- 系統誤差も含めた最終結果を算出。
 - ▶系統誤差はハドロン化モデルが支配的。
 - ► $BR(B \rightarrow X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4} (M_{X_s} < 2.8 \text{ GeV/c}^2)$
 - ► E_{γ} > 1.6 GeVへの外挿。 $BR(B \rightarrow X_{s}\gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4} (E_{\gamma} > 1.6 \text{ GeV})$

系統誤差の内訳

Source	Systematic uncertainty (%)
$B\overline{B}$ counting	1.37
Detector response	2.98
Background rejection	3.38
M_{bc} PDF	5.06
Hadronization model	6.66
Missing mode	1.59
Total	9.3

各M_{xx}ビンでの崩壊分岐比

M_{xs} (GeV/c²)

2013/01/30

- ►世界平均((3.55±0.26))×10-4)とは0.4oで一致。
- ▶標準理論の予言((3.15±0.23))×10-4)とは1.3 σで一致。
- ▶本結果単独で2HDMでM_{H±}>238 GeV/c²(95%CL)の制限を与える。

結論

- Belle実験の全データ711fb⁻¹ (7.72億*BBペ*ア)を用いて、 準包括的再構成法を用いた $B \rightarrow X_s \gamma$ の崩壊分岐比測定を行った。
 - ► $BR(B \rightarrow X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$ ($E_{\gamma} > 1.6 \text{ GeV}$)
- 世界平均とは0.4oで一致。
- 標準理論の予言とは1.3 σで一致。
- 本結果は2HDMで*M_{H±}*>238 GeV/c²(95%CL)の制限を与える。