2015/03/24

日本物理学会 第70回年次大会

モデル依存の無いDalitz解析を用いた、 *CP*非保存パラメータ_{♥3}測定に向けた B⁰→[K_sππ]_D[K⁺π⁻]_{K*0}崩壊の研究 根岸 健太郎、他 Belle Collaboration 日本物理学会 第70回年次大会@早稲田大学

• CKM行列

- クオークの質量・フレイバー混合をさせるユニタリ行列 複素位相

$$V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• ユニタリ三角形
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• CKM行列

- クオークの質量・フレイバー混合をさせるユニタリ行列 $V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$

▶ B⁰のフレイバーはK*⁰からの荷電Kから識別 Br(K*⁰ → K⁺π⁻) = 2/3

- φ₃効果はD⁰K^{*0}とD⁰K^{*0}の干渉に現れる

	Weak Int. phase	Strong Int. phase	Amp.
D ⁰ K*0とD ⁰ K*0の差	ф ₃	δ_{S}	$\mathbf{r}_{S} \equiv \left \frac{A(\bar{B}^0 \to \bar{D}^0 \bar{K}^{*0})}{A(\bar{B}^0 \to D^0 \bar{K}^{*0})} \right $

r_sはφ₃測定に重要な物理量 (r_s~0.3 (予想値))

Dalitz Analysis

- B⁰/B⁰ 非対称をDalitz plot上で観測する.
 - D崩壊にD⁰とD⁰が両方崩壊出来る三体崩壊を要求

- D⁰/D¯⁰(→K_s⁰π⁺π⁻)崩壊のAmp.比、強い相互作用の位相差
 - *|f*(m²₊, m²₋)*|は*D^{*+}→D⁰π⁺イベントから測定可能
 - 位相差(δ_D)Charm-Factoryで測定可能

2015/03/24

日本物理学会 第70回年次大会

6

Model-Independent Dalitz Method

[A. Giri, Y. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)]

日本物理学会 第70回年次大会

2015/03/24

シグナル・背景事象

エネルギー差

シグナルは~0にピーク

3D Fit

9

Red:シグナル Yellow: D⁰p⁰ Green: D⁰a₁⁺ Blue: D偽BB Light blue: D真BB Magenta: qq qq like BB like Events / (05 30 20F 10 -0.1 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 -0.05 0 0.05 0.1 0.15 [GeV] [GeV] $M_{\rm bc} \equiv \sqrt{E_{\rm Beam}^2 - p_B^2}$ C'_{NB} $\Delta E \equiv E_B - E_{\text{Beam}}$

qq背景事象排除パラメター

(前述のニューラルネットから)

Beam情報を用いた B質量

(x,y) Fit

10

[A. Bondar, A. Poluektov, Eur. Phys. J. C55, 51-56 (2008)]

stat. syst.
$$c_i$$
, s_i
 $x_- = + 0.4^{+1.0}_{-0.6} + 0.0_{-0.1} \pm 0.0$
 $y_- = -0.6^{+0.8}_{-1.0} + 0.1_{-0.0} \pm 0.1$
 $x_+ = + 0.1^{+0.7}_{-0.4} + 0.0_{-0.1} \pm 0.1$
 $y_+ = + 0.3^{+0.5}_{-0.8} + 0.0_{-0.1} \pm 0.1$

r_sはφ₃測定に重要な物理量
 − φ₃測定誤差は1/rに比例

• BelleのB⁰→[K_s⁰π⁺π⁻]_DK^{*0} Mod.-Ind. Dalitz analysis新結果

stat. syst.
$$c_i, s_i$$

 $x_- = + 0.4^{+1.0}_{-0.6} + 0.0_{-0.1} \pm 0.0$
 $y_- = -0.6^{+0.8}_{-1.0} + 0.1_{-0.0} \pm 0.1$
 $x_+ = + 0.1^{+0.7}_{-0.4} + 0.1_{-0.1} \pm 0.1$
 $y_+ = + 0.3^{+0.5}_{-0.8} + 0.0_{-0.1} \pm 0.1$
 $r_S < 0.87$ at 68 % C.L.

- 中性B→DK*0の他D崩壊モードとコンバイン可能

B⁰→[K_s⁰π⁺π⁻]_DK^{*0} Mod.-Ind. Dalitz analysisを確立、 Belle IIでの結果に期待がかかる

BACKUP

KEKB加速器

- 電子源:熱電子銃
- 陽電子源:
 電子をタングステンに入射し抽出
- 電子8.0 GeV/陽子3.5 GeV (βγ~0.4)
- 入射器:2004年から連続入射法
- 電流: 双方1 A程度
- バンチ数:双方1000程度
- バンチ当たり粒子数:10¹⁰
- ・ ビーム: O(1) μm x O(100) μm
- 衝突点での交差角:22 mrad
- 2007年から「クラブ衝突」導入

¹The luminosity is described as $\mathcal{L} = N_+ N_- f / 4\pi \sigma_x^* \sigma_y^*$, where N_{\pm} is the number of particles e^{\pm} per bunch, f is the frequency of collision, and $\sigma_{x,y}^*$ is the beam size at IP in x or y direction.

SVD (Silicon Vertex Detector)

CDC (Central Drift Chamber)

- Anode: 50 layers including 18 stereo wires (30µm-diameter gold-plated tungsten)
- r from beam axis = 8.3-86.3 cm
- -77 < z < 160 cm (17° < θ < 150°)

ACC (Aerogel Cherenkov Counter) $n > \frac{1}{2} = \sqrt{1 + (\frac{m}{p})^2}$

TOF (Time-of-Flight Counter)

0.25

飛行時間分解能

 $\sigma(ToF)$ vs. Zhit

The weighted average of both ends

- r from beam axis = 120 cm
- Length = 3-m long, N_{scintillators} = 128
- $\sigma_{\rm T}$ = 100 psec
- K/ π separation up to 1.2 GeV

ECL (Electromagnetic Calorimeter)

- PINフォトダイオードを用い、電磁シャワーを検出。
- エネルギー分解能は、~1.3%/VE。位置分解能は~0.5 cm/VE。(E in GeV)

(回路ノイズ、シャワーの漏れ、較正誤差などが効いてくる。)

BELLE CSI ELECTROMAGNETIC CALORIMETER

KLM (K_L/Muon Detector)

- 鉄とRPC (Registive Plate Chamber)のサンドイッチ構造(14層)。
- K_L(シャワーを発生)とMuon(長い飛跡)の検出を行う。

KSFW

• Fox-Wolfram (FW) moment (P₁ = *I*-th Legendre polynomial):

$$H_l \equiv \sum_{i,j} |\vec{p_i}| |\vec{p_j}| P_l(\cos \theta_{ij}),$$

• Fisher discriminant of Super FW (SFW):

$$\text{SFW} \equiv \sum_{l=2,4} \alpha_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right) + \sum_{l=1}^4 \beta_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right)$$

Separate signal B and the other B.

• Kakuno-SFW:

$$\text{KSFW} \equiv \sum_{l=0}^{4} R_{l}^{\text{so}} + \sum_{l=0}^{4} R_{l}^{\text{oo}} + \gamma \sum_{n=1}^{N_{t}} |p_{t,n}|,$$

Missing momentum, Charges of tracks, ... Fisher coefficients are determined for seven missing mass regions.

Flavor tagging

- B-flavor taggingは、下記の情報を用いて行う。
- (1) high-momentum leptons from $B^0 \to X \ell^+ v$ decays,
- (2) kaons, since the majority of them originate from $B^0 \to K^+ X$ decays through the cascade transition $\overline{b} \to \overline{c} \to \overline{s}$,
- (3) intermediate momentum leptons from $\bar{b} \rightarrow \bar{s}$ 事象ごとに、(1)から(2)に $\bar{c} \rightarrow \bar{s}\ell^- \bar{v}$ decays, 関連した約50の変数を得て、
- (4) high momentum pions coming from $B^0 \rightarrow 3$ 次元Likelihood法を用いる。 $D^{(*)}\pi^+X$ decays,
- (5) slow pions from $B^0 \to D^{*-}X, D^{*-} \to \overline{D}^0 \pi^-$ Taggingの精度r_{tag}は、 decays, and ________ qq背景事象分離に用いる。
- (6) \overline{A} baryons from the cascade decay $\overline{b} \to \overline{c} \to \overline{s}$.

- Belle実験
 - $Y(4S) \rightarrow B^+B^- \sim 50\%$ - e⁺e⁻衝突でY(4S)を生成 $\rightarrow B^0\overline{B}^0 \sim 50\%$
- KEKB加速器 :電子 8.0 GeV、陽電子 3.5 GeV
 - 重心エネルギー10.58 GeVの非対称衝突型加速器

導入

- 2011年秋期JPSにてB⁰→[K π]_D[K⁺ π^{-}]_{K*0}を用い ϕ_{3} 測定の為のパラメタR_{ADS}を発表 - R_{ADS} = $\frac{\Gamma(B^{0} \rightarrow [K^{-}\pi^{+}]_{D}K^{*0})}{\Gamma(B^{0} \rightarrow [K^{+}\pi^{-}]_{D}K^{*0})} = r_{S}^{2} + r_{D}^{2} + 2kr_{S}r_{D}\cos(\delta_{S} + \delta_{D})\cos\phi_{3}$ = (4.1⁺5.6^{+2.8}) * 10⁻² < 0.16 @ 95 % C.L. PRD **86** 011101 (2012) ここで, B⁰→[K⁻ π^{+}]_D[K⁺ π^{-}]_{K*0}は観測されず
- さらに中性B中間子のDK*0崩壊について研究が望まれる
- また2012年, B⁺→[K_sπ⁺π⁻]_DK⁺ にて世界初のモデル依存の無い Dalitz解析を用いたφ₃測定結果が発表された
 - $\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ} \text{ PRD 85, 112014 (2012)}$ $(r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011)$
 - このモデル依存の無いDalitz解析を用いた ϕ_3 測定は 将来Super-B Factoryにおいて非常に有用であり、 これを用いた $B^0 \rightarrow [K_s \pi \pi]_p [K^+ \pi^-]_{\kappa^* 0} \sigma \phi_3$ 測定を目指す

コンティニウムバックグラウンドの抑制 (KSFW, $\cos\theta_R$) $e^+e^- \rightarrow qq (q = u, d, s, c)$

- イベントの形状からシグナルと
 - コンティニウムバックグラウンドの尤度比(LR_{KSFW})を求める。

- e⁺e⁻重心系のBの角度分布(cosθ_B)も使う。
 - Bイベントは軌道角運動量1となる

シグナル : 1 - $\cos^2\theta$ コンティニウム:ほぼ一様

Belle II + Super-Charm-Factory

 $=|\pm 0.1$

 $\Delta(x,y)_{stat}$

29

結論,及び考察

- r_sは0と無矛盾
 - B⁰→DK*⁰シグナル数が小さかった 44.2 ^{+13.3}/_{-12.1} (統計誤差が支配的)
 崩壊分岐比で Br(B⁰→DK*⁰) = (2.9 ± 0.9)×10⁻⁵

	イベント数	Br(B ⁰ →DK* ⁰)	ずれ	
本結果	44.2	$(2.9 \pm 0.9) \times 10^{-5}$		
BaBar	78	$(5.2 \pm 1.2) \times 10^{-5}$	-1.5σ	ただし"ずれ"は
PDG	64	$(4.2 \pm 0.6) \times 10^{-5}$	-1.2σ	大きくない

- 統計的なふらつきによる
- ・ Belle II 実験(予定)では

コンテニウム抑制パラメータ

<u>戻る</u>

2015/1/29

コンテニウム抑制パラメータ

<u>戻る</u>

Variable	Only this (σ)	Without this (σ)	Corr. to others
LR(KSFW)	290	62	0.85
v1_v1	280	35	0.87
Δz	145	68	0.29
$distance_{DK^{*0}}$	105	49	0.23
qr	126	51	0.31
$ \cos \theta_B $	102	42	0.21
$ \cos \theta_{\rm thr} $	246	14	0.81
thru_oth	58	12	0.23
v_Z	42	9	0.18
v3_v3	84	7	0.64
v2_v2	80	6	0.66
$\cos \theta_B^D$	10	4	0.12

• Fox-Wolfram (FW) moment ($P_l = l$ -th Legendre polynomial):

$$H_l \equiv \sum_{i,j} |\vec{p_i}| |\vec{p_j}| P_l(\cos \theta_{ij}),$$

• Fisher discriminant of Super FW (SFW):

$$\text{SFW} \equiv \sum_{l=2,4} \alpha_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right) + \sum_{l=1}^4 \beta_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right)$$

Separate signal B and the other B.

• Kakuno-SFW:

$$\text{KSFW} \equiv \sum_{l=0}^{4} R_{l}^{\text{so}} + \sum_{l=0}^{4} R_{l}^{\text{oo}} + \gamma \sum_{n=1}^{N_{t}} |p_{t,n}|,$$

Missing momentum, Charges of tracks, ... Fisher coefficients are determined for seven missing mass regions.

戻る 33

- B-flavor taggingは、下記の情報を用いて行う。
- (1) high-momentum leptons from $B^0 \to X \ell^+ v$ decays,
- (2) kaons, since the majority of them originate from $B^0 \to K^+ X$ decays through the cascade transition $\overline{b} \to \overline{c} \to \overline{s}$,
- (3) intermediate momentum leptons from $\bar{b} \rightarrow \bar{s}$ 事象ごとに、(1)から(2)に $\bar{c} \rightarrow \bar{s}\ell^- \bar{v}$ decays, 関連した約50の変数を得て、
- (4) high momentum pions coming from $B^0 \rightarrow 3$ 次元Likelihood法を用いる。 $D^{(*)}\pi^+X$ decays,
- (5) slow pions from $B^0 \to D^{*-}X, D^{*-} \to \overline{D}^0 \pi^-$ Taggingの精度r_{tag}は、 decays, and qq背景事象分離に用いる。
- (6) \overline{A} baryons from the cascade decay $\overline{b} \to \overline{c} \to \overline{s}$.

