Belle II 実験における B⁰→K_Sπ⁰γ崩壊の再構成の ためのK_S finderの開発

東北大学 素粒子実験グループ 蕏塚昌大

目次

• 導入

- ▷ b → s γ 崩壊
- ➢ Belle Ⅱ 実験
- ➢ Belle Ⅱ 検出器
- ▶ $B^{0} \rightarrow K_{S} \pi^{0} \gamma$ の再構成
- \succ K_S $\rightarrow \pi^+ \pi^-$ の選別方法
- ▶ Belle II でのK_S選別
- 解析
 - ▶ B崩壊モードでの K_S → π⁺ π⁻ 選別
 - ▷ drによるカット
 - ▶ 結果
- まとめ

b → s γ 崩壊

ペンギンダイアグラム;数字はおおよその質量

charged Higgsが飛ぶ場合のダイアグラム

Flavor Changing Neutral Current

- クォークの電荷が変化しない過程
- 標準模型(SM)では、ツリーレベルで禁止

ループの中は重い粒子も存在できる

Wと結合する(反)クォークは左(右)巻き → 放出するγは左(右)巻き

→ 時間依存CPVが強く抑制される

Beyond SMの効果

- ループの中を新粒子が飛ぶ (例: charged Higgs)
- 右巻きのγも許される i.e. CPモードが存在

最も崩壊分岐比の大きいB⁰→K_Sπ⁰γによって、 時間依存CPVの効果を測定する

- 非対称衝突
 - Bの崩壊位置から崩壊時間差が求まる $\Delta t = \Delta z / \beta \gamma c$
- Belle実験(~2010年)からマシンをアップグ レード

SuperKEKB加速器

- 目標ルミノシティ 800 nb⁻¹s⁻¹: Belleの40倍
 - 物理量の精密測定
 - 稀崩壊の観測

Belle II 検出器

$B^{0} \rightarrow K_{S} \pi^{0} \gamma$ の再構成

検出器でヒットした情報から粒子を再構成し、組み合わせる。

• K_sの再構成

π+とπ-を組み合わせる

今回のテーマ

π⁰の再構成

2つのγを組み合わせる

B⁰から直接崩壊したγの選択

高いエネルギーをもつ

	崩壊分岐比	親粒子寿命
$B^0 \to K^{*0} \gamma$	4×10 ⁻⁵	1.52×10 ⁻¹² s
$K^{*0} \to K^0_S \pi^0$	33%	1.4×10 ⁻²³ s
$\pi^0 \to \gamma \gamma$	98.8%	8×10 ⁻¹⁷ s
$K^0_S \to \pi^+\pi^-$	69.2%	8.95×10 ⁻⁹ s

1. 重い中性粒子(V粒子)を見つける

特徴

- 2つのπが1点から生成する
 - 崩壊点z成分の差z_{dist}は小さい
- 衝突点(IP)から離れて崩壊する
 - xy平面での飛距離flをもつ
- 崩壊した粒子は運動量を持って飛び出す
 - xy平面での軌跡までの距離drをもつ 今回のカット条件
- IPから見た崩壊点と運動量は同じ向き 間の角度d₀は小さい
- 2. V粒子の中からKsを選別
 - KsとBGの変数分布の差異を利用する
 - significanceが最大となるようにカット
 - 多変数解析を使ってカット位置を選ぶ

F.Fang(ハワイ大学)

$K_S \rightarrow \pi^+ \pi^-$ の選別方法

V粒子	K _s	٨
質量	497.6 MeV	1115.7 MeV
сτ	2.68 cm	7.89 cm
崩壊モード	π⁺π⁻ 69% (π⁰π⁰ 31%)	pπ⁻ 64% (np0 36%)

significance = $\frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$

Belle II でのK_S選別

中野(東北大)、石川(同)、 住澤(KEK)

- Belle

 G finder: NIS K_S finder
 - 9変数を追加:合計13個→<u>V粒子らしさ</u>
 - 運動量
 - 遠崩壊点までの空間距離
 - K_S運動量とπ運動量の間の角度
 - πのSVDヒット判定
 - CDCワイヤーヒット数(軸方向/ステレオ)
 - 7変数→<u>non-∧らしさ</u>
 - p/π識別値
 - Λ(pπ)仮定質量
 - 娘粒子の運動量、方向 P. Jaeger(メルボルン大学)
 - Belle II への実装
 - ほぼ完了して組み込み待ち
 - さらなる改善:研究目標
 データ誤差を考慮して精度を向上

B崩壊モードでの K_S → π⁺ π⁻ 選別

- 中性B中間子対のMCサンプルからK_Sの選別を試みた
 - signal side: $B^0 \rightarrow K^{*0}(\rightarrow K^+\pi^-)\gamma$ ※K_sは全てtag side
 - 10万個のイベント
- 不変質量が 0.450 < M [GeV] < 0.550 を満たす荷電 粒子対をとった

drによるカット

- dr: ビーム軸に垂直な平面での、IPからπ+/-軌跡までの距離(impact parameter)のうち小さい方
- BGのdrは0.1mm程度より低い値に分布
 - 系の運動量pが大きいほど低い値に分布する
- p [GeV]に応じてカットをかけた

cut condition is same to stdKshorts() from stdV0.py
reconstructDecay('K_S0:pipi -> pi+:all pi-:all','0.450<M<0.550')
cutAndCopyList('K_S0:p1','K_S0:pipi','p<0.5')
cutAndCopyList('K_S0:p2','K_S0:pipi','0.5<=p<=1.5')
cutAndCopyList('K_S0:p3','K_S0:pipi','p>1.5')

cut by approach from IP to track of pi in x-y plane applyCuts('K_S0:p1','daughter(0,dr)>0.05 and daughter(1,dr)>0.05') applyCuts('K_S0:p2','daughter(0,dr)>0.03 and daughter(1,dr)>0.03') applyCuts('K_S0:p3','daughter(0,dr)>0.02 and daughter(1,dr)>0.02')

dr > 0.5 mm

dr > 0.3 mm

dr > 0.2 mm

図はカット後の質量分布

K_S候補の質量分布 [GeV]

- purity = N_{sig}/(N_{sig}+N_{bg})は、再構成した粒子に対応するMC粒子が存在する割合 (isSignalの平均)で求めた
- drによるカットで、BGの約90%が取り除かれた
- BGの除去により、significanceが2倍まで向上した
- p>1.5GeVのシグナル数が少なく、分布が他と比べ乱れた
 - Belle IIではBelleよりboostが小さい($\beta \gamma$: 0.425→0.283)
 - 実験室系での運動量分布がより低い領域に変化する
 - 運動量範囲の調整が必要

- NIS K_s finderはBelle IIで実装され、性能を検討しつつ向 上させる段階にある
- drによるカットはBelle IIにおいてもV粒子からK_sを選別するのに役立つことが確かめられた
- 多変数解析の手法により、他の変数も用いてK_S選別を行う
- B⁰→K_Sπ⁰γのモードを研究し、崩壊点の再構成とCPVの測 定を目指す

解析: 崩壊事象の再構成

- MDST→終状態粒子(FSP)
- カットによるFSPの絞り込み
- 親粒子へ結合
- カットによる親粒子の絞り込み

繰り	返す
----	----

neural net:multivarから効率よく

時間依存CPV

• CP対称なモードが干渉して起こる

- 崩壊時間差からCPV変数S,Aを求める
 - tag Bの崩壊率 $P(\Delta t) = \frac{\exp(-|\Delta t|/\tau_{B^0})}{4\tau_{B^0}} [1 + q\{S\sin(\Delta m_d\Delta t) + A\cos(\Delta m_d\Delta t)\}]$ q: bフレーバー荷 τ_{B^0} : Bの平均寿命 Δm_d : Bの質量差

再構成手順

- 検出器の測定データ読み込み
 - Track, ECLCluster
 - Monte Carlo法でシミュレーション
- 終状態から順番に
 - 粒子選別(カット)
 - 崩壊点と4元運動量を再構成
- →Bを再構成
- 他方のB(Bsig)
 - Bsigの軌跡=Btagの残りの軌跡
 - Bsigの4元運動量= P_{beam} P_{btag}
 - Bのフレーバー、崩壊点

Tracks		EM-Cluster
e^+ μ^+	<i>K</i> ⁺ π ⁺	γ
	Ks	π^0
J/ψ	$D^0 D^+ D_S$	$\langle \rangle /$
		$D^{*0} D^{*+} D^*_S$
	B ⁰ B ⁺	

Belleでの再構成イメージ; NeuroBayesを使って各オブジェク トを関連させる

K_S中間子

中性K中間子

生成 強い相互作用による ストレンジネス(S)固有状態 S=+1<u>K⁰</u> S=-1:<u>K⁰</u> 崩壊 弱い相互作用による CP固有状態 CP=+1 $K_S = (K^0 + \overline{K^0})/\sqrt{2}$ $\rightarrow \pi^+\pi^-$ に崩壊 CP=-1 $K_L = (K^0 - \overline{K^0})/\sqrt{2}$ $\rightarrow \pi^+\pi^-\pi^0$ に崩壊 (正確には、KのCPVにより混合している)

Ks中間子

質量 497.6 MeV 寿命 $\tau = 0.896 \times 10^{-10}$ s (K₁: 5.1×10⁻⁸ s) $\rightarrow c\tau = 2.68$ cm