

2015年2月2日 修士論文発表会 素粒子実験(加速器)研究室博士前期課程2年 新崎ゆう子

はじめに

▶ 素粒子間の相互作用を記述する模型

	物	1質粒子		ゲージ粒子	▶↓HCでヒッグス粒子発見
クォ	u	С	t	g	▶ ニュートリノ質量や暗黒物質な
 ク	d	S	b	Z, W±	ど、標準理論では説明できない現 象も存在
レプ	V e	Vμ	Vτ	γ	→新しい物理模型の導入が必要 →ヒッグスセクターが拡張
トン	е	μ	τ	Н	

▶ 拡張ヒッグス模型を導入する際の制限 電弱ρパラメータ:実験値1.0008+0.0017 -0.0007

$$\rho_{tree} \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \\ = \frac{\sum_i [|v_i|^2 (T_i(T_i+1) - Y_i^2) + u_i^2 T_i'(T_i'+1)]}{2\sum_i |v_i|^2 Y_i^2}$$

$$m_W, m_Z$$
 W、Zボソンの質量
 θ_W ワインバーグ角
 $w_i, (u_i)$ 複素(実)場のVEV
 $T_i, (T'_i)$ 複素(実)場のアイソスピン
 Y_i ハイパーチャージ

	2ヒッグス二重項 2HDM	ヒッグス三重項 HTM	Georgi-Machacek GM				
ヒッグス場	Y=1/2のアイソスピン二重項 場φ1、φ2	Y=1/2のアイソスピン二重項 場φ Y=1のアイソスピン三重項場 Δ	標準模型ヒッグス二重項場 φ Y=1の三重項場χ Y=0の三重項場ξ				
ρパラメータ	$\rho = 1$	$ ho=rac{1+2v_\Delta^2/v_\phi^2}{1+4v_\Delta^2/v_\phi^2}$	ρ=1				
HWZの結合	ループを介して 結合 パープを介して 		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
特徴	★SUSYは、暗黒物質を含む タイプⅡ2HDM ★レプトン特化型のタイプX では、荷電ヒッグス粒子はレ プトンに結合(H→τν)	★ニュートリノ質量を説明 ★二重荷電ヒッグス粒子が現 れる ★一重荷電ヒッグス粒子は WZ崩壊の分岐比が大きい場 合がある	 ★特殊な対称性により、ρ パラメータ=1を保つ ★一重荷電ヒッグス粒子は 二種類あり、一方はゲージ 粒子に、一方は物質粒子に 結合 				
HWV結合のツリーレベルに おける有効ラグランジアン $\mathcal{L}_{eff} = gm_W f_{HWV} H^{\pm} W^{\mp}_{\mu} V^{\mu}$ 2							
2015年2月2日	Yuko	Shinzaki 修士論文発表					

以下の二つの事象を用いて、生成断面積の上限値を計算

→ILCの重心エネルギー250 GeVにおける荷電ヒッグス粒子探索の 可能性を検証

→HWZ結合を含む模型に対して形状因子の上限を与えられるか検証

解析の方針

- ▶ 反跳質量法をもちいて荷電ヒッグス粒子を再構成する。
- ▶ Wボソンが2ジェットに崩壊する事象を再構成するよう解析を行う。

2015年2月2日

2015年2月2日

Yuko Shinzaki 修士論文発表

Yuko Shinzaki 修士論文発表

シミュレーション条件

シミュレーションの条件

- 検出器シミュレーション
- 積分ルミノシティ

ILD_01_v05 (TDR ver.) *L*=250 fb⁻¹ P(e+, e-) = (-30%, +80%)「右偏極」

- 偏極

	崩壊過程	生成断面積(fb)	事象数(k)	
Sig(1)	WH (H $\rightarrow \tau v$)	214	54	
Sig(2)	WH (H → WZ)	214	54	
	Di-jet	46200	12000	
	e v W →e v jj	445	110 W	由来の背景事象
	Zee →iiee	300	74 を	抑制(左偏極時)
SM BG	WW →jjl v	758(11000)	190(2700)	
	WW → jjjj	600(8700)	150(2200)	
	ZZ →jjll	467	¹²⁰ 事	家数が
	ZZ → jjjj	402	¹⁰⁰ 1 0)分の1以下に
	ZZWWmix \rightarrow jjjj	565	140	
	Zh → ffh	205	51	Sec. Sec.

Y

T V 過程の解析と結果

▶ BR(H→ τ v)=100%を仮定 ▶ Wが2ジェットに崩壊する事象を再構成する →反跳質量法により荷電ヒッグス粒子を再構成

Durhamアルゴリズムを用いて、イベント中の全PFOを強制 的に3本のジェットに再構成

$$Y_{ij} = \frac{2min(E_i, E_j)(1 - \cos \theta_{ij})}{E_{vis}^2}$$

E_j,E_j:2つのジェットのエネルギー *θ_{ij}*:2ジェット間の角度 *E_{vis}*:可視エネルギー

→2粒子がどれだけ近いかを表した指標

Wボソンの質量に一番近いジェットを2本選ぶ

 $(\frac{M_{jetpair}-m_W}{m_W})^2$ $\chi^2 =$ σ_W

M_{jetpair}:ジェットペアの質量 *m_W*:Wボソンの質量(80 GeV) *σ_W*:Wボソンの質量分解能(=4.8 GeV)

反跳質量法を用いて荷電ヒッグス粒子の質量を計算

Yuko Shinzaki 修士論文発表

全横運動量によるカット

▶ total Pt:測定された運動量のベクトル和の、ビーム軸に対して垂直な成分の大きさ

BDTG値によるカット

BDTG((Gradient) Boosted Decision Tree):

事象サンプルの一部(学習サンプル)を用いて信号事象と背 景事象を分類する関数を作る

▶ 学習サンプル中の複数の変数に対し信号事象と背景事象 が最適に分類される値を決める。

> →背景事象、信号事象らしさを実数(-1~1)で返す。 全事象

2015年2月2日

Yuko Shinzaki 修士論文発表

2015年2月2日

Yuko Shinzaki 修士論文発表

カット条件ごとの事象数変化

	$WH(\tau v)$	Di-jet	evW→evjj	WW→jjl v	ZZ→jjII	others
no cut	53618	11553700	111356	189596	116797	518315
mw&mrec	31958	1307060	23795	35671	28561	1892 <mark>0</mark>
pt	29624	31281	22005	32323	21021	4873
Evis	27255	9375	11437	21191	18580	1219
Wangle	26177	5421	10423	19408	17205	1147
BDTG	17961	1459	2131	5025	1834	230

選別条件

70 < Mw < 90 (GeV) 110 < Mrec < 190 (GeV) 15 < Pt (GeV) 170 < Evis (GeV) 0.95 < | cos θ _{Wangle} | -0.675<BDTG

信号事象領域

70 < Mw < 90 (GeV) 140 < Mrec < 160 (GeV) 15 < Pt (GeV) 170 < Evis (GeV) $0.95 < |\cos \theta_{Wangle}|$ -0.675 < BDTG

	$WH(\tau v)$	Di-jet	evW → evjj	WW→jjl v	ZZ→jjII	others	
no cut	53618	11553700	111356	189596	116797	51831 <mark>5</mark>	
after cut	14276	581	837	1729	863	95	
検出効率 $\varepsilon = 26.62\%$ 信号有意度 $S = 105$ (FHWZ=1, FHW γ =0, BR(H $\rightarrow \tau v$)=100%) $S = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$ 23							

2015年2月2日

Yuko Shinzaki 修士論文発表

WZ過程の解析と結果

カット条件ごとの事象数変化

	WH(WZ)	Di-jet	evW→evjj	WW→jjl v	ZZ→jjII	other <mark>s</mark>
no cut	53613	11553700	111356	189596	116797	51831 <mark>5</mark>
mw&mrec	13399	1307060	23795	35671	28561	1892 <mark>0</mark>
pt	11575	31281	22005	32323	21021	487 <mark>3</mark>
Evis	10435	14339	19568	30155	20351	267 <mark>7</mark>
Wangle	9938	10048	17827	27496	18853	251 <mark>1</mark>

選別条件

70 < Mw < 90 (GeV) 110 < Mrec < 190 (GeV) 15 < Pt (GeV) 200 < Evis (GeV) 0.95 < | cos θ Wangle |

生成断面積の上限値

生成断面積の上限値の計算方法

- ▶ 信号事象に対して生成断面積0 fbの 状態を考える
- ▶ 同統計数N_{obs}の実験を複数回行う
 →背景事象は< N_{bg} >中心に分布を つくる
- ▶ N_{bg}分布がガウス分布になると仮定 する→N_{obs} – N_{bg}が図のようになる
- ▶ N^{UL}_{95%}に対して断面積を求める →95%信頼度生成断面積上限値σ^{UL}_{95%}

$$\sigma_{95\%}^{UL} = \frac{N_{95\%}^{UL}}{\varepsilon \cdot \mathcal{L}} = \frac{2\sqrt{\langle N_{bg} \rangle}}{\varepsilon \cdot \mathcal{L}}$$

生成断面積の上限値の計算

τ v 崩壊過程

 $F_{HWZ} = 1$ のとき、 $\sigma = 214$ fb 背景事象数N_{ba} 4015 $\sigma_{95\%}^{UL} = \frac{N_{95\%}^{UL}}{\epsilon \cdot f} = \frac{2\sqrt{\langle N_{bg} \rangle}}{\epsilon \cdot f}$ 信号事象検出効率 ϵ 0.2662 積分ルミノシティL 250 fb⁻¹ $\sigma_{95\%}^{UL} = 1.92 \text{ fb} \rightarrow F_{95\%}^{UL} = 0.0974$ $(|F_{95\%}^{UL}|^2 = 0.00897)$

WZ崩壞過程

背景事象数N_{ba} 25749 信号事象検出効率*ε* 0.0889 積分ルミノシティL 250 fb⁻¹ $\sigma_{95\%}^{UL} = 14.4 \text{ fb} \rightarrow F_{95\%}^{UL} = 0.259$ $(|F_{95\%}^{UL}|^2 = 0.0673)$

τ v 過程の結果と2HDM(タイプX) の比較

► 2HDMのレプトン特化型タイプX
におけるtan β – F²図

- tan β ≤ 1の領域は、B-Bbar mixingから制限されている (Phys.Rev.D81:035016,2010)
- ▶ 荷電ヒッグス粒子質量150 GeV/c² のもとでは、tan β = 1のとき最大 で、F²~2×10⁻⁴ ※1ループのため形状因子小

τ v 過程の結果と2HDM(タイプX)の比較

→ 新たに制限を与えることができない

WZ過程の結果とGK模型の比較 > VEVと形状因子の大きさの関係 0.09 $F^2 = \frac{4v_{\Delta}^2}{\cos^2\theta_W(v^2+4v_{\Delta}^2)} 0.07$ (Shinya Kanemura, Kei Yagyu, physical 0.06 review D 83, 075018(2011)) E 0.05 0.04 LHC実験の結果により、 $v_{\Delta} > 70 \text{ GeV} 0.03$

0.02

0.01

0

0

は棄却される。 (arXiv:1501.04257)

10

20

vΔ

30

40

WZ過程の解析の結果 |**F**^{UL}_{95%}|² = 0.0673 →この解析手法で検出できる可能性がある (検出できなかったとしても制限を与えることが可能)

ILC実験の重心エネルギー250 GeVにおける荷電ヒッグス粒子探 索の可能性を検証

- ▶ 積分ルミノシティ 250 fb-1、右偏極、荷電ヒッグス粒子質量150GeVを想定
- ▶ 荷電ヒッグス粒子がWボソンを伴って生成する事象を反跳質量法により再構成
 - 荷電ヒッグス粒子がτνに崩壊する過程の解析
 σ^{UL}_{95%} = 1.92 fb → F^{UL}_{95%} = 0.0974 (|F^{UL}_{95%}|² = 0.00897)
 →2HDM(タイプX)に対しては新たに制限を与えることはできない
 - 荷電ヒッグス粒子がWZに崩壊する過程の解析
 σ^{UL}_{95%} = 14.4 fb → F^{UL}_{95%} = 0.259(|F^{UL}_{95%}|² = 0.0673)
 →GM模型の荷電ヒッグス粒子であれば検出可能性あり 検出されなくても、新たに制限を与えることが出来る

 \prec

Backup slides