



# Belle実験における B→K\*y崩壊の崩壊分岐比及び アイソスピン、CP非対称性の測定

## 東北大理 <u>堀口朋裕</u>、石川明正、山本均、 他 Belle Collaboration



- b→sγ遷移
  - 標準模型ではツリーレベルの崩壊は禁止。最低1ループの崩壊
  - ループ中に新物理の寄与がある場合、観測量が標準模型の予言 からズレる可能性がある⇒ 新物理に感度あり
- 信号事象, B→K\*(892)γ
  - b→sy崩壊の約10%
  - 他の共鳴状態と分離が可能



 $b \rightarrow s\gamma$ のファインマン図



Ph.D thesis written by T. Saito. http://epx.phys.tohoku.ac.jp/~saito/Belle/dthesis\_saito.pdf

Xs:ストレンジネス1のハドロンの総称

観測量

- 崩壊分岐比(BF)
- アイソスピン非対称性(Δ<sub>0</sub>\_)
- CP非対称性(A<sub>CP</sub>)
- B<sup>+</sup>とB<sup>0</sup>のCP非対称性の差(ΔA<sub>CP</sub>)



772×10<sup>6</sup>のB中間子対を使って精度向上を目指す

 $\Delta_{0-} = \frac{\Gamma(\overline{B}^0 \to \overline{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\overline{B}^0 \to \overline{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$ 

 $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$ 

 $\Delta A_{CP} = A_{CP}^{B^-} - A_{CP}^{\overline{B}^0}$ 

再構成

## ・4種類の信号事象を再構成

- $B^{0} \rightarrow K_{s}\pi^{0}\gamma, K^{+}\pi^{-}\gamma$  $B^{+} \rightarrow K_{s}\pi^{+}\gamma, K^{+}\pi^{0}\gamma$
- 粒子の選択
  - 孤立した高エネルギー光子
    - $E_{\gamma} > 1.8 \text{ GeV}$
  - *π<sup>0</sup>→γγ*の再構成
    - $| M_{\pi 0}^{PDG} M_{\gamma \gamma} | < 10 \text{ MeV}/c^2$
  - K<sub>s</sub>→π<sup>+</sup>π<sup>-</sup>の再構成
    - 最近接点を使った崩壊点補
  - |M<sub>κs</sub><sup>PDG</sup> M<sub>ππ</sub>|< 10 MeV/*c*<sup>2</sup> – 荷電粒子
    - K/π 識別
  - 運動学変数(M<sub>bc</sub>とΔE)を定 義





背景事象の抑制

- e<sup>+</sup>e<sup>-</sup>→qq̄(q = u, d, c, s)
   信号数の2倍程度(再構成後)
   <u>イベント形状</u>をによる選別
   83%の信号事象を残して、
  - **89%**の背景事象抑制
- B由来の背景事象
   M<sub>bc</sub>にピークを作る









## 信号抽出方法

## <u>Unbinned Maximum Likelihood でM<sub>bc</sub>をフィット</u>

- 方針:
   Self flavor tagging 可能な崩壊を、BとBの崩壊と で分けて考え、7種類のM<sub>bc</sub>分布を同時フィット
  - 6種類: K<sup>+</sup>π<sup>-</sup>γ, K<sup>-</sup>π<sup>+</sup>γ, Ksπ<sup>+</sup>γ, Ksπ<sup>-</sup>γ, K<sup>+</sup>π<sup>0</sup>γ, K<sup>-</sup>π<sup>0</sup>γ
  - 1種類: Ksπ<sup>0</sup>γ (自信でB<sup>0</sup>B<sup>0</sup>の区別はできない)
- 利点
  - 観測量を同時に決定
    - BF(B<sup>0</sup> $\rightarrow$ K<sup>\*0</sup> $\gamma$ ), BF(B<sup>+</sup> $\rightarrow$ K<sup>\*+</sup> $\gamma$ ),  $\Delta_{0-}$ , A<sub>CP</sub>(B<sup>0</sup> $\rightarrow$ K<sup>\*0</sup> $\gamma$ ), A<sub>CP</sub>(B<sup>+</sup> $\rightarrow$ K<sup>\*+</sup> $\gamma$ ),  $\Delta$ A<sub>CP</sub>
  - フィットにつく系統誤差を抑えられ、Numerical calculation に比べ、複雑な誤差伝搬の計算が必要ない

フィット結果

 $B^0 \rightarrow K^+ \pi^- \gamma, \overline{B}^0 \rightarrow K^- \pi^+ \gamma \mathcal{O}M_{bc}$ 分布 Total, 信号(Gaussian),  $q\overline{q}$  (ARGUS), BB(ARGUS+ Bifurcated Gaussian)



| 崩壊過程                               | $N(\overline{B})$ | N(B) | 合計                   |
|------------------------------------|-------------------|------|----------------------|
| $B^0 \rightarrow K_s \pi^0 \gamma$ |                   |      | $349 \pm 23 \pm 6$   |
| $B^0 \rightarrow K^+ \pi^- \gamma$ | 2294              | 2361 | $4650 \pm 82 \pm 51$ |
| $B^+ \rightarrow K_s \pi^- \gamma$ | 756               | 717  | $1473 \pm 46 \pm 15$ |
| $B^+ \rightarrow K^+ \pi^0 \gamma$ | 569               | 575  | $1144 \pm 46 \pm 22$ |



A<sub>cp</sub>とΔA<sub>cp</sub>の測定は統計誤差が支配的なので省略

| (%)           | BF(K*0γ) | BF(K*+γ) | Δ <sub>0-</sub> |
|---------------|----------|----------|-----------------|
| MC stat.      | 0.13     | 0.19     | 0.11            |
| Bの生成数         | 1.37     | 1.37     | —               |
| 光子            | 2.00     | 2.00     | —               |
| Tracking      | 0.70     | 0.80     | 0.05            |
| K/π ID        | 1.57     | 0.81     | 0.38            |
| Ks            | 0.05     | 0.39     | 0.17            |
| $\pi^0$       | 0.09     | 0.42     | 0.17            |
| その他のselection | 0.75     | 0.77     | 0.19            |
| f+-/f00       | 1.20     | 1.20     | 1.20            |
| Fitter bias   | 0.17     | 0.18     | 0.08            |
| Fit param.    | 1.15     | 1.01     | 0.21            |
| Total         | 3.50     | 3.27     | 1.28            |

$$f_{+-}/f_{00} = \frac{\Gamma(\Upsilon(4S) \to B^+B^-)}{\Gamma(\Upsilon(4S) \to B^0\bar{B}^0)}$$
 (値はPDGより)  
JPS annual meeting 2017

結果(崩壊分岐比)

## <u>世界一の精度を更新</u> $\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.02 \pm 0.07 \pm 0.14) \times 10^{-5}$ $\mathcal{B}(B^+ \to K^{*+}\gamma) = (3.82 \pm 0.10 \pm 0.13) \times 10^{-5}$ 系統誤差が支配的



結果(非対称度)



まとめ

#### Belle 実験の全データ(772×10<sup>6</sup> BB̄)を用いて B → K\*γの 測定をした。

 $\mathcal{B}(B^{0} \to K^{*0}\gamma) = (4.02 \pm 0.07 \pm 0.14) \times 10^{-5}$ 全ての測定で 世界最高精度  $\mathcal{B}(B^{+} \to K^{*+}\gamma) = (3.82 \pm 0.10 \pm 0.13) \times 10^{-5}$   $\Delta_{0-} = (+6.2 \pm 1.5 \pm 0.5 \pm 1.2(f_{+-}/f_{00}))\%$   $A_{CP}(B^{0} \to K^{*0}\gamma) = (-1.1 \pm 1.7 \pm 0.2)\%$   $A_{CP}(B^{+} \to K^{*+}\gamma) = (+1.4 \pm 2.4 \pm 0.3)\%$   $A_{CP}(B \to K^{*}\gamma) = (+0.3 \pm 1.4 \pm 0.2)\%$   $\Delta A_{CP} = (+2.5 \pm 2.9 \pm 0.3)\%$ 

- アイソスピン破れの兆候を世界で初めて観測した(3.1σ)。
- 標準模型を越える物理に制限を付けることができる。
- Belle II で更なる精度向上が期待される。

## Backup slide

#### **Operator Product Expansion**

- 有効ハミルトニアンをWilson係数( $C_i$ )と実効オペレータ( $O_i$ )を使って書き表す。
  - 量子効果を1つのvertexに押し込め、Wilson係数で表現

$$\mathcal{H}_{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}} \sum_{i} \lambda_{\text{CKM}} C_i(\mu, M) \mathcal{O}_i(\mu)$$



- *C<sub>7</sub>*は標準模型では実数
- 新物理の効果がある場合、C<sub>7</sub>にズレが見られる
- 理論計算の精度
  - Inclusive(b→sy全て): ハドロン化の影響小
     ⇒崩壊分岐比、比の観測量が新物理に感度
  - Exclusive(B→K\*γ,B→K<sub>1</sub>γなど):ハドロン化の不定性大
     ⇒<u>比を計算して不定性をキャンセルできるので新物理に感度</u>

## **Isospin violation**

Annihilation or spectator particle with photon emission events arise isospin violation. By charge difference between "u" and "d" quark, non-zero isospin value is evaluated.

$$\Delta_{0-} = \operatorname{Re}(b_d - b_u)$$

$$b_q = \frac{12\pi^2 f_B Q_q}{m_b T_1^{B \to K^*} a_7^c} \left( \frac{f_{K^*}^{\perp}}{m_b} K_1 + \frac{f_{K^*} m_{K^*}}{6\lambda_B m_B} K_2 \right)$$

- 1) Annihilation diagram
- <sup>2</sup> Charm penguin effect
- ③ Chromo-magnetic dipole operator



## Belle実験(加速器)

## <u> OKEKB加速器(1999–2010)</u>

- 茨城県つくば市にある周長3kmの円形加速器
- 電子(8GeV)、陽電子(3.5GeV)の衝突
- 主要運転は 10.58 GeV (Y(4S) 共鳴)
- 世界最高輝度の運転
  - ・瞬間ルミノシティ: 2.11×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - 積分ルミノシティ: 1040 fb<sup>-1</sup>



JPS annual meeting 2017

KEKB 加速器

elle 測定器

加速空洞

陽電子源

## Belle実験(測定器)

#### <u>〇高い粒子識別能力と運動量測定精度を持つ複合型検出器</u>



MCサンプル生成

#### • 生成する信号事象

- *Y(4S) → BB, B →K*\*(892)γ – 世界平均の崩壊分岐比
- Belle 実験200回分を生成

#### ・想定する背景事象

- Continuum background ( $e^+e^- \rightarrow qq$ )
- Generic *B* decay ( $b \rightarrow cW$ )
- $\bigcirc$  Rare *B* decay ( $b \rightarrow u/s/d$  遷移)
  - *B → K\*η, K\*π, K*π 等
- $X_s \gamma$  decay (b→sγ :  $M_{\chi_s} > 1.15$  GeV/ $c^2$ )
  - K\*γ と Kππγ を除いた b → sγ 崩壊
- $\bigcirc B \rightarrow K \pi \pi \gamma$  decay

| 崩壊分岐比(10⁻⁵)              |      |  |  |  |
|--------------------------|------|--|--|--|
| $B^0 \to K^{*0} \gamma$  | 4.33 |  |  |  |
| $B^+ \to K^{*_+} \gamma$ | 4.21 |  |  |  |

| <i>В → К</i> ππγ崩壊                  | (10 <sup>-6</sup> ) |
|-------------------------------------|---------------------|
| $B \rightarrow K_1(1270)\gamma$     | 14.5                |
| $B \to K_1(1400) \gamma$            | 4.1                 |
| $B \rightarrow K^*(1410)\gamma$     | 11.0                |
| $B \rightarrow K^*_{2}(1430)\gamma$ | 1.2                 |
| $B \rightarrow K^*(1680)\gamma$     | 15.9                |

• 信号領域にピークを作る背景事象を詳細に見積もる

○はPeaking background

高エネルギー光子の再構成

b → sy崩壊で最も特徴的な信号 高エネルギーで孤立したECLクラスターを選ぶ

# クラスターへの要求 1.8 < Ey < 3.4 GeV (重心系)</li> クラスターの広がり ビーム軸に対する光子の角度 (バレルのみ)

## • $\pi^0/\eta$ veto

- π<sup>0</sup>(η)から崩壊した高い運動量をも
   つ光子の除去
- イベント中の光子を組み合わせ、 尤度を計算
  - m<sub>yy</sub>:2光子の不変質量
  - *π<sup>0</sup>* (η) → γ<sub>high</sub> γ<sub>low</sub>, 崩壊のγ<sub>low</sub>の運動量



π<sup>0</sup> veto

- 粒子の再構成
- 荷電粒子(K<sup>±</sup>, π<sup>±</sup>)の選択
  - インパクトパラメータ
  - $p > 0.1 \, \text{GeV}/c$
  - *K/*π 粒子識別
    - Likelihood による識別: ACC, TOF, CDC のヒット情報
    - · 誤識別率(π) 8.5%
- *π*<sup>0</sup> (→γγ)の再構成
  - $|M_{\pi 0}^{PDG} M(\gamma \gamma)| < 10 \text{ MeV}/c^2$
  - $-\cos\vartheta_{\gamma\gamma} > 0.5$
  - $E_{\gamma} > 50 \text{ MeV}$
  - *p*>0.5 GeV/*c*



Kの再構成

#### • 再構成モード $K_{c} \rightarrow \pi^{+}\pi^{-}$ ●

- 崩壊点の再計算
  - 荷電トラック2本の最近接
     点を計算し、Kの崩壊点として4元運動量を再計算
- *K<sub>s</sub>の質量* - |M<sub>Ks</sub>-M<sub>ππ</sub>| < 10 MeV/*c*<sup>2</sup>



#### ● 背景事象の除去

- ニューラルネットワークを用い た多変数解析
  - V0-particle likeness (13変数)
    - 2本の荷電粒子に崩壊する粒子
    - 運動量、角度分布、飛行距離等
  - A likeness (7変数)
    - proton を仮定したトラックとπを仮
       定したトラックの不変質量、πの
       運動量等



#### 背景事象抑制

- ニューラルネットワーク(NB)を使って多変数解析
- ・信号有意度が最大になるように、出力(NB)を決定



83%の信号事象を残して、89%の背景事象抑制に成功 (先行研究ではLikelihoodにより73%の信号を残し90%の背景事象の抑制)

aq 背景事象除去後、 1事象にB候補が1つであることを乱数を用いて要求

## 背景事象の除去と扱い方針



● B由来の崩壊事象 - 信号数の7%程度の混入

- M<sub>bc</sub>にピークを作る



| $B \rightarrow K^+ \pi^- \gamma$ | 信号      | qq                  | B由来全て               | 検出効率   | 有意度   |
|----------------------------------|---------|---------------------|---------------------|--------|-------|
| 生成時                              | 21599.9 | $2.3 \times 10^{9}$ | $7.6 \times 10^{8}$ | 100%   | -     |
| 再構成                              | 7457.2  | 33597.2             | 822.5               | 34.61% | 36.44 |
| πº/η veto                        | 6852.4  | 13207.0             | 697.3               | 31.8%  | 47.56 |

## 多変数解析による qq背景事象抑制

選別に有効なパラメータ(9種類) □ ルジャンドル多項式を用いた イベント形状(KSFW) □ cosθ<sub>thrust</sub>(スラスト軸) □ Sphericity(5種類) □ cosθ<sub>g</sub>(重心系でのB崩壊角) □ フレーバータグパラメータ, qr







## 系統誤差 (崩壊分岐比)

| (%)              | K <sub>s</sub> π <sup>0</sup> γ | Κ+π-γ | K <sub>s</sub> π+γ | Κ+π <sup>0</sup> γ | Κ*0γ | Κ*+γ |
|------------------|---------------------------------|-------|--------------------|--------------------|------|------|
| MC stat.         | 0.37                            | 0.14  | 0.24               | 0.29               | 0.13 | 0.19 |
| Bの生成数            | 1.37                            | 1.37  | 1.37               | 1.37               | 1.37 | 1.37 |
| 光子               | 2.00                            | 2.00  | 2.00               | 2.00               | 2.00 | 2.00 |
| Tracking         | 0.70                            | 0.70  | 1.05               | 0.35               | 0.70 | 0.80 |
| K/π ID           | —                               | 1.65  | 0.80               | 0.84               | 1.58 | 0.81 |
| Ks               | 0.59                            | —     | 0.59               | —                  | 0.05 | 0.39 |
| По               | 1.27                            | —     | —                  | 1.27               | 0.09 | 0.42 |
| Μ(Κπ)            | 0.31                            | 0.31  | 0.31               | 0.31               | 0.31 | 0.31 |
| qq sup.          | 0.56                            | 0.56  | 0.56               | 0.56               | 0.56 | 0.56 |
| <b>ΔE window</b> | 1.16                            | 0.34  | 0.07               | 1.19               | 0.40 | 0.43 |
| f+-/f00          | 1.20                            | 1.20  | 1.20               | 1.20               | 1.20 | 1.20 |
| Fit bias         | 2.35                            | 0.19  | 0.66               | 1.31               | 0.17 | 0.18 |
| Fit param.       | 1.78                            | 1.13  | 0.95               | 1.85               | 1.15 | 1.01 |
| Total            | 4.51                            | 3.52  | 3.35               | 4.10               | 3.50 | 3.26 |



## Likelihood の定義



## 高い共鳴状態からの B→Kπγ 事象の見積もり

29

- M(Kπ) 30 MeV/c<sup>2</sup> ごとにM<sub>bc</sub>のフィットし、M(Kπ)分布を作成
- P-wave Breit-Wigner 関数でM(Kπ)分布をK\*(892)とK<sub>2</sub>\*(1430)
   に対して フィットし、B→Kπγ の寄与を見積もる

P-wave Breit-Wigner ØAmplitude

$$\mathcal{M}_{\rm BW}(M_{K\pi}, M_{K\gamma}) = F_B F_{K^*} \frac{M_{K\gamma}^2 - M_{\pi\gamma}^2 + (M_B^2 - M_{\gamma}^2)(M_{\pi}^2 - M_K^2)}{M_{K^*}^2 - M_{K\pi} - iM_{K^*}\Gamma_{K\pi}}$$
  
**Γ<sub>Kπ</sub>:不変質量依存の崩壊幅**



## 正負電荷の検出器の反応の違い

#### 荷電粒子の検出効率は電荷によって異なる

- qq事象が支配的な領域のM<sub>bc</sub>分布をフィットして決定
  - -0.5 < ΔE < 0.5 GeV, |M(Kπ) M(K<sup>\*</sup>)|< 75 MeV/c<sup>2</sup>, NB(ニューラルネット出力) < 0</li>
  - ピークを持つ要素は 0.5%程度 → <u>ガウシアン</u>で決定
  - Continuum 成分は <u>ARGUS</u> で決定



## 結果考察(CP非対称性の測定)

## $B \rightarrow K^* \gamma OCP 非対称性はC_7 の虚数項に感度$

 $A_{\rm CP}(B^0 \to K^*\gamma) \sim [0.003 - 0.45 {\rm Im}C_7(m_b)] \frac{\mathcal{B}(B^0 \to K^{*0}\gamma)_{\rm SM}}{\mathcal{B}(B^0 \to K^{*0}\gamma)}$ 



#### 実数項と虚数項のCrへの制限

<mark>青</mark>:A<sub>cP</sub>(B→K\*γ)の結果含まない 赤:A<sub>CP</sub>(B→K\*γ)の結果含む。50%の理論の不定性 <u>緑:A<sub>CP</sub>(B→K\*γ)の結果含む。25%の理論の不定性</u>

JPS annual meeting 2017

Altmannshofer, W. & Straub, D.M. Eur. Phys. J. C (2015) 75: 382



<u>新物理に強い制限をかけられる</u>

## Belle II における測定精度

- 2018年から運転開始予定
  積分ルミノシティ:50倍
- 崩壊分岐比(系統誤差改善が狙い)
  - Belleの測定で系統誤差が支配的
  - ΔEの要求を厳しくすることで、B由来の背景事象を減らす。
  - 粒子識別効率の改善
- CP非対称性, ΔA<sub>CP</sub> (統計誤差改善が狙い)
   - ~0.3%以下の測定精度
- **アイソスピン非対称性** 
   (統計、系統誤差両方改善)

   - ~0.2% の統計誤差
   - f<sub>+</sub> /f<sub>00</sub> の測定も向上見込み



## $f_{+}/f_{00}$

• The ratio of BFs btw Y(4S)→B<sup>0</sup>B<sup>0</sup> and B<sup>+</sup>B<sup>-</sup>

− assuming 100% of the branching fraction of  $Y(4S) \rightarrow BB$ 

 Calculation of the reconstructed events with signal (N<sub>s</sub>) and double (N<sub>d</sub>) tag method

$$N_{s} = 2N_{B\bar{B}}f_{00}\epsilon_{s}\mathcal{B}(B^{0} \to D^{*+}\ell^{-}\nu) \qquad f_{00} = \frac{\epsilon_{d}/\epsilon_{s}^{2}N_{s}^{2}}{4N_{d}N_{B\bar{B}}}$$
$$N_{d} = N_{B\bar{B}}f_{00}\epsilon_{d}[\mathcal{B}(B^{0} \to D^{*+}\ell^{-}\nu)]^{2}$$

$$f_{+-}/f_{00} = 1.058 \pm 0.024$$

- Dominated uncertainty is statistical uncertainty however it is comparable to total systematic uncertainty.
- Major systematic source is number of B mesons (nBB).
- nBB uncertainty comes from the cross section measurement of the decay of ee→μµ.
- This parameter will be improved in Belle II.

Peaking background list having isospin and CP asymmetry

• We consider about the CP and isospin asymmetries which have peaking backgrounds.

| 崩壊                 | Δ <sub>0-</sub>  | A <sub>CP</sub>  |
|--------------------|------------------|------------------|
| B→Xsγ              | $-0.01 \pm 0.06$ | $0.015 \pm 0.02$ |
| <u>B→Xsn</u>       | 0±0.20           | $-0.13\pm0.05$   |
| B→K*η              | -                | $0.19 \pm 0.05$  |
| B→K*π <sup>0</sup> | -                | $-0.15\pm0.13$   |

## 誤識別率(w)の見積もり

# CP非対称性の測定に影響する誤識別の寄与

$$A_{CP} = \frac{1}{1 - 2w} \frac{\mathcal{B}(B \to K^* \gamma) - \mathcal{B}(B \to K^* \gamma)}{\mathcal{B}(\overline{B} \to \overline{K}^* \gamma) + \mathcal{B}(B \to K^* \gamma)}$$

- Double Miss ID イベント
  - *K<sup>±</sup>π<sup>∓</sup>*を同時に誤識別
- M<sub>bc</sub> 分布のピークを抽出し非対称
   度を計算
  - ピークPDF : ガウシアン
  - 背景事象: ARGUS関数





## その他の系統誤差

• B中間子数 (1.37%)

- Off-resonanceの運転との比較をして計算。(771.581 ± 10.566) × 10<sup>6</sup>

- 光子の検出効率(2.0%)
  - Radiative Bhabha event (*e⁺e⁻→e⁺e⁻γ*)とmissing 4-vector の比を計算
- K/π 識別 (1.65% at B → K<sup>+</sup>π<sup>-</sup>γ)
  - $D^{*_+} \rightarrow D^0 \pi^+_{,s} D^0 \rightarrow K^- \pi^+$ を再構成し、PIDの選別前後の信号数を比較して評価する。  $\pi^+_{,s}$ によって  $D^0$  かanti- $D^0$  か決定できる。
  - 運動量とKπの数に依存するので崩壊過程ごとに評価
- π<sup>0</sup> 検出効率(1.27%)
  - $\varepsilon = N(\eta \rightarrow 3\pi^{0})/N(\eta \rightarrow \gamma\gamma)$ と定義し、MCと実データの比を計算して評価する。ただしN( $\eta \rightarrow \gamma\gamma$ )/N( $\pi^{0} \rightarrow \gamma\gamma$ )はMCとデータで等しいと仮定。
- Fitter の不定性
  - フィット関数が持つ不定性: ToyMC から決定
  - - 固定したパラメータの不定性: Control sample や別実験の測定結果から
     不定性を求める
- 物理定数(PDGより)
  - life time ratio  $\tau(B^+)/\tau(B^0) = 1.076 \pm 0.004$
  - Y(4S)の崩壊分岐比 (*f+-/f00*)= 1.058 ± 0.024