Belle II Silicon Vertex Detector dry volume development for cooling test @ JPS 03/2017

Thomas Czank, Koji Hara ^A, Takeo Higuchi ^B, Akimasa Ishikawa, Tomohiro Horiguchi, Hyebin Jeon^C, Changwoo Joo^C, Naoya Kambara^D, Kookhyun Kang^C, Seugnchul Lee^C, Tomoko Morii^B, Katsuro Nakamura^A, Yoshiuki Onuki^E, Antonio Paladino^F, Junya Sasaki^E, Nobuhiro Sato^A, Yoshiaki Seino^G, Nobuhiro Shimizu^E, Toru Tsuboyama^A, Kun Wan^E, Minori Watanabe^H, Shun Watanuki, Hitoshi Yamamoto, Toshiki Yoshinobu^G

Tohoku, KEK^A, IPMU^B, Kyungpook^C, TUS^D, Tokyo^E, INFN^F, Niigata^G, NIT(Asahikawa)^H

17th of March, 2017

2 Dry Volume

3 Dew Point Evolution

APV Inspection

Analog Pipeline [Voltage Mode] in 0.25 μ m silicon, APV25(CMOS technology)

James David George Leaver Blackett Laboratory Imperial College London - PhD Thesis 2005

SVD group, KEK, 2011

Katsuro-san's slide 19

APV temperature measurement

APV25 without cooling pipes

- APV generates heat during assembly DAQ
- CO2 cooling will be at -20°C
 - Chip on sensor
 - Cooling pipe on chip
- Temperature Check
- Components Arrangement Check

Belle II SVD Assembly Procedure

- 1 Half of a SVD layer, tested independently, will be mounted
- 2 The cooling pipes are mounted after the half layer is set
- 3 A trial DAQ(Data Acquisition) with the APV chips will be started with the CO2 cooling system running
- 4 APV chip temperature check, so that each are distinguishable from the other
- the environment of the mounted half layer might damage the components which need to be protected from:
 - humidity
 - dust
 - vibrations

Dry Volume Requirements

- 1 The Dry Volume will be set up to contain the SVD half layer completely, **isolating it** from the outside environment
- 2 Dry air will be pumped inside the dry volume
- 3 **Interlocked** Dew Point sensors with the cooling system guarantee that it will be started **only** when the Dew Point is lower than $-40^{\circ}C$
- Dry Volume requirements
 - it needs to be kept dry
 - transparent to visible and infrared radiation
 - compatible with a lot of cabling
 - mobile and settable

Assembly completion requirements and difficulties

- 3 main requirements
 - Overpressure > 0 Pa
 - Dew Point $<-40^\circ C$
 - Visible and Infrared Radiation Transparent walls
- Difficulties
 - More Cables = more leaking
 - more leaking \rightarrow dew point reduction inefficiency
 - Sensor distribution
 - Thermal camera inaccuracy

Dry Volume

- Dry volume can protect SVD components from outside
- Control internal environment
- Must abort operation if needed in emergency
 - Dry air influx stop
 - Unexpected leak
 - Anything leading to an increase in the DP

Description

- Divided into two modules, upper module is a **half cylinder** and the lower one, a **box**
- Receiving an influx of 50 or 100 L/min of dry air through the lower module
- Vacuum pump sucking the air at -9L/min through the top module
- Overpressure of at least 1 Pa measured
- Aluminum Frame, covered with viscoelastic foam to reduce air leakage
- GAT (旭化成製赤外線透過絶縁保護カバー) Plastic Walls so that the internal temperature of each origami module APV may be monitored with a Thermal camera

Dry Volume Design and Monitoring Sensors

- To check humidity dispersion inside Dry Volume
- Sound and light alarms activation if -40°C DP threshold is crossed

- Vaisala DMT 143
- Orion MG40
- Honeywell HIH-4030/31
- Datalogger GRAPHTEC GL840
- Pressure Sensor MANOSTAR WO81
- CO2 sensor TAND TR-76Ui

Dew Point Evolution with all cabling "windows" filled (realistic leakage scenario)

Thermo Image

Camera picture of the ladder

Thermal Camera picture

An overlay of both pictures make the APV distinction clearer and allow to check if the **cooling pipe is touching the chips** or **not**

Thermo Picture and APV identification

Not powered APVs with liquid CO2 at -8.6°C running in the cooling pipes, not in perfect contact with the APVs, and Frost Point lower than -50°C

M1,2,3... are APV marks

- Dry Volume works achieving significant overpressure and reducing the humidity
- The humidity takes longer than 10min to penetrate the Dry volume, ladders would be safe in the time need to abort operations
- APV identification and temperature monitoring is possible

Overpressure changes

Considering the cross section dependence of the measured overpressure as

$$S = \frac{Flow}{240} \frac{1}{\sqrt{\Delta P \times 0.1}}$$

Δ_σ of BWD windows at 100L/min

Dry Air Filters

Dry Air Filters

- Mist Filter (Orion MSF 200B)
- Vapor Filter (activated charcoal filter) (KSF200B)
- Final filter (OFF-050-04-A)
- 3 outlets: CO2 cooling, Dry Volume and others
- no equipment using oil in air system

Measurement of a Red Brick, heated by an isolated oven, temperature using a thermocamera

Yamato website, 2016

- Thermocamera Testo 870-2
- Red Brick with a Thermal Conductivity of $0.732 \left[\frac{W}{mK} \right]$

THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER LAFAYETTE IN, 1971

• Yamato Constant Temperature and Humidity IW 242 Oven

Thermo pictures and Filter effect

without filter

At higher temperatures the difference between measured T is about 10 C, as for lower than 0 C it is about -10 C

Thermo Picture and APV identification 2

Not powered APVs with liquid CO2 at -12°C running in the cooling pipes and Frost Point lower than -50°C

CO2 cooling pipes contact with APV

