Top electroweak couplings study using di-leptonic state at \sqrt{s} = 500 GeV, ILC with the Matrix Element Method

AWLC2017, SLAC

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A, Junping Tian^C, Keisuke Fujii^D,

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Outline

Motivation

Kinematical reconstruction of top quark

- Strategy of kinematical reconstruction
- Fraction of wrong assignment of b-jets
- Helicity angles computation

Matrix element method analysis

- Fit of CP-Conserving form factors
- Fit of CP-Violating form factors

Summary

Top EW Couplings Study

Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)

 \rightarrow Top EW couplings are good probes for New physics behind EWSB

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v \gamma_5) t \right]$$

In new physics models, such as composite models, the predicted deviation of coupling constants, g_L^Z , g_R^Z (= $F_{1V}^Z \mp F_{1A}^Z$) from SM is typically 10 %

Di-leptonic State of the top pair production

Top pair production has three different final states:

- Fully-hadronic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q})$ 46.2 %
- Semi-leptonic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu)$ 43.5%
- **Di-leptonic state** $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l\nu l\nu)$ **10.3%**

Advantage

- 9 helicity angles can be computed (details will be described later)
- \rightarrow Higher sensitivity to the form factors

Difficulty

• Two missing neutrinos \rightarrow Difficult to reconstruct top quark.

Develop the reconstruction process in realistic situation

Set Up of Analysis

Situation	On / Off
Full simulation of ILD	On
Hadronization	On
Gluon emission from top	On
ISR/BS	On
γγ→hadrons	On
bkg. events	Off (ongoing)
Sample (Only signal)	$\frac{\text{Di-muonic state}}{e^+e^- \to b\bar{b}\mu^+\nu\mu^-\bar{\nu}}$
\sqrt{s}	500 GeV
Polarization (P_{e^-}, P_{e^+})	(-0.8, +0.3) "Left" / (+0.8, -0.3) "Right"
Integrated luminosity	500 fb ⁻¹ (50/50 between Left and Right)
Generator	Whizard
Detector	ILD_01_v05 (DBD ver.)

Reconstruction Process

- Isolated leptons tagging
 - Number of isolated leptons = 2 & Opposite charge each of two
- > Suppression of $\gamma\gamma \rightarrow$ hadrons
 - kt algorithm (cf. the Semi-leptonic analysis, R = 1.5)
- b-jet reconstruction
 - LCFI Plus (Durham algorithm)
 - The b-charge measurement is not used

> Kinematical reconstruction of top quark

$$e^{+}e^{-} \rightarrow t\bar{t} \rightarrow b\bar{b}\mu^{+}\nu\mu^{-}\bar{\nu}$$
Measurable $\begin{bmatrix} muon's : E_{\mu^{+}}, \theta_{\mu^{+}}, \phi_{\mu^{+}}, E_{\mu^{-}}, \theta_{\mu^{-}}, \phi_{\mu^{-}} \\ b_{-jet's} : E_{b1}, \theta_{b1}, \phi_{b1}, E_{b2}, \theta_{b2}, \phi_{b2} \end{bmatrix}$
Missing $\begin{bmatrix} neutrino's : E_{\nu}, \theta_{\nu}, \phi_{\nu}, E_{\overline{\nu}}, \theta_{\overline{\nu}}, \phi_{\overline{\nu}} \\ => 6 \text{ unknowns} \end{bmatrix}$

To recover them, impose the kinematical constraints;

- Initial state constraints : $(\sqrt{s}, \vec{P}_{\text{init.}}) = (500, \vec{0})$
- Mass constraints : $m_t, m_{\bar{t}}, m_{W^+}, m_{W^-}$

=> 8 constraints (2 in excess)

We don't need E_{b1} and E_{b2} which are relatively difficult to reconstruct.

ightarrow Just use to decide the assignment of b-jets

To detect the solution, we solve the following equations.

 $E_{\mu^{\pm}}^{W^{\pm} \operatorname{rest frame}}(\theta_t, \phi_t) = m_{W^{\pm}}/2 \ (\text{Red} : \mu^+, \operatorname{Green} : \mu^-)$

assignment A (correct), b1 = b, $b2 = \overline{b}$ **assignment B** (wrong), $b1 = \overline{b}$, b2 = b

We need to select the optimal solution from these candidates.

$$\chi_{b}^{2}(\theta_{t},\phi_{t}) \equiv \left(\frac{E_{b}(\theta_{t},\phi_{t})-E_{b}^{\text{meas.}}}{\sigma[E_{b}^{\text{meas.}}]}\right)^{2} + \left(\frac{E_{\overline{b}}(\theta_{t},\phi_{t})-E_{\overline{b}}^{\text{meas.}}}{\sigma[E_{\overline{b}}^{\text{meas.}}]}\right)^{2} = 2 \text{ (Blue)}$$
assignment A (correct), $b1 = b$, $b2 = \overline{b}$
assignment B (wrong), $b1 = \overline{b}$, $b2 = b$
 σ^{σ} $s = \frac{\sigma^{\sigma}}{2}$

→ The assignment A is selected and the solution is $(\theta_t, \phi_t) \simeq (0.5, -0.35)$

Technically, to obtain the solution, we minimize χ^2_{tot} ;

$$\chi^2_{tot}(\theta_t, \phi_t) = \chi^2_{\mu}(\theta_t, \phi_t) + \chi^2_b(\theta_t, \phi_t)$$

where
$$\chi^2_{\mu}(\theta_t, \phi_t) \equiv \left(\frac{E_{\mu^+}^{(W^+ \operatorname{rest frame})}(\theta_t, \phi_t) - m_{W^+/2}}{\sigma[E_{\mu^+}^{(W^+ \operatorname{rest frame})}]}\right)^2 + \left(\frac{E_{\mu^-}^{(W^- \operatorname{rest frame})}(\theta_t, \phi_t) - m_{W^-/2}}{\sigma[E_{\mu^-}^{(W^- \operatorname{rest frame})}]}\right)^2$$

$$\chi^2_{\mu}$$
 is dominant to determine (θ_t, ϕ_t) because $\sigma \left[E^{(W \text{ rest frame})}_{\mu} \right] \ll \sigma [E_b]$

AWLC2017

*F*_{wrong} : Fraction of the Wrong Assignment of b-jets

 F_{wrong} (the fraction of the wrong assignment of b-jets) = 22 % When we use samples not including ISR, $F_{wrong} = 8 \%$

25

 χ^2

 \rightarrow ISR significantly affects the assignment problem.

We use two quantities to reduce $F_{\rm wrong}$

10

10

 $\Delta \chi^2$

*F*_{wrong} : Fraction of the Wrong Assignment of b-jets

AWLC2017

Helicity Angles Computation

All final state particles including two neutrinos can be calculated. The 9 helicity angles which are related to the ttZ/γ vertex are computed.

 $\theta_t, \theta_{W^+}^{t \text{ frame}}, \phi_{W^+}^{t \text{ frame}}, \theta_{\mu^+}^{W^+ \text{ frame}}, \theta_{W^-}^{\overline{t} \text{ frame}}, \phi_{W^-}^{\overline{t} \text{ frame}}, \theta_{\mu^-}^{W^- \text{ frame}}, \phi_{\mu^-}^{W^- \text{f$

AWLC2017

Matrix Element Method Analysis

Matrix element method is based on the maximum likelihood method.

$$-2\log L(F) (= \chi^{2}(F)) = -2 \left(\sum_{e=1}^{N_{\text{event}}} \log |M|^{2} (\Phi_{e}, F) - N(F) \right)$$

 $|M|^2$: the full matrix element, Φ_e : the 9 helicity angles, F: the form factors, N(F): the expected number of events.

The minimization of $\chi^2(F)$ automatically introduces the derivatives;

$$\omega_i(\Phi_e) = \frac{1}{|M|^2(\Phi_e)} \frac{\partial |M|^2(\Phi_e)}{\partial F_i} \Big|_{F \text{ at SM}}, \qquad \Omega_i = \frac{1}{N} \frac{\partial N}{\partial F_i} \Big|_{F \text{ at SM}}$$

The results of fit are related with $\omega_i(\Phi_e)$ and Ω_i ;

•
$$\delta F_i (= F_{\text{fit}} - F_{\text{SM}}) \simeq \frac{\langle \omega_i - \Omega_i \rangle}{\langle (\omega_i - \Omega_i)^2 \rangle}$$

• covariance matrix, V_{ij} ;

$$V_{ij}^{-1} = N_{\text{event}} < (\omega_i - \Omega_i) (\omega_j - \Omega_j) >$$

Fit of the CP-Conserving form factors

Result of $\delta \tilde{F}_{1V}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

 $\delta \tilde{F}_{1V}^{\gamma} = 0.0223 \pm 0.0066, \ \chi^2_{\text{test}} = 11.4 \Leftrightarrow 0.07\% \text{ CL}$

The $\omega - \Omega$ distribution of the wrong assignment (Green) is

- shifted to positive \rightarrow bias
- blunter \rightarrow over estimates the precision

* $\chi^2_{\text{test}} = \sum \delta F_i V_{ij}^{-1} \delta F_j$: the chi-square test

Fit of the CP-Conserving form factors

Result of $\delta \tilde{F}_{1V}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

 $\delta \tilde{F}_{1V}^{\gamma} = 0.0223 \pm 0.0066, \ \chi^2_{\text{test}} = 11.4 \Leftrightarrow 0.07\% \text{ CL}$

After the quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, total efficiency 28%) $\delta \tilde{F}^{\gamma}_{1V} = 0.0075 \pm 0.0115$, $\chi^2_{test} = 0.43 \Leftrightarrow 51\%$ CL

Good agreement between MC truth and Rec. \rightarrow The bias disappears.

→ The error becomes larger ($\sim \sqrt{N}$)

The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization

 $\left(\delta \tilde{F}_{1V}^{\gamma}\right)$

 $\left(\delta \tilde{F}^Z_{1A}\right)$

 $\left(\delta \tilde{F}_{2V}^{\gamma}\right)$

AWLC2017

The distributions of $\omega - \Omega$ (aft. the quality cut)

"Left" polarization

 $\left(\delta \tilde{F}_{1V}^{\gamma}\right)$

 $\left(\delta \tilde{F}^Z_{1A}\right)$

 $\left(\delta \tilde{F}_{2V}^{\gamma}\right)$

AWLC2017

Fit of the CP-Conserving form factors

Results of 6 CPC form factors fit

Before quality cut (total efficiency 77%)

$$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & +0.0188 \pm 0.0089 \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} & +0.0293 \pm 0.0161 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} & +0.0280 \pm 0.0133 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z} & +0.2250 \pm 0.0202 \\ \mathcal{R}e \ \delta \tilde{F}_{2V}^{Z} & -0.0246 \pm 0.0260 \\ \mathcal{R}e \ \delta \tilde{F}_{2V}^{Z} & +0.1448 \pm 0.0435 \end{bmatrix}$$

$$\chi^{2}_{\text{test}} = 166 \Leftrightarrow \sim 0\% \text{ CL}$$

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, total efficiency 28%)

$$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & +0.0088 \pm 0.0154 \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} & +0.0339 \pm 0.0270 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} & +0.0233 \pm 0.0221 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z} & +0.0704 \pm 0.0340 \\ \mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma} & +0.0788 \pm 0.0461 \\ \mathcal{R}e \ \delta \tilde{F}_{2V}^{Z} & +0.1244 \pm 0.0762 \end{bmatrix}$$

 $\chi^2_{\text{test}} = 10.0 \Leftrightarrow 12.5\% \text{ CL}$

Fit of the CP-Violating form factors

Result of $Re\delta \tilde{F}_{2A}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

 $Re\delta \tilde{F}_{2A}^{\gamma} = -0.0172 \pm 0.0185, \ \chi^2_{\text{test}} = 0.87 \Leftrightarrow 35\% \text{ CL}$

The $\omega - \Omega$ distribution of the wrong assignment (Green) is

- centered at 0
 - ightarrow no apparent effect on the bias
 - $\rightarrow \chi^2_{\text{test}}$ is misleading
 - → if we use a CP-Violating sample, the wrong assignment will dilute the effect of CPV
- blunter \rightarrow over estimates the precision

*
$$\chi^2_{\text{test}} = \sum \delta F_i V_{ij}^{-1} \delta F_j$$
: the chi-square test

Fit of the CP-Violating form factors

Result of $Re\delta \tilde{F}_{2A}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

 $Re\delta \tilde{F}_{2A}^{\gamma} = -0.0172 \pm 0.0185, \ \chi^2_{\text{test}} = 0.87 \Leftrightarrow 35\% \text{ CL}$

After the quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, total efficiency 28%) $Re\delta \tilde{F}^{\gamma}_{2A} = -0.0052 \pm 0.0287$, $\chi^2_{test} = 0.034 \Leftrightarrow 85\%$ CL

Good agreement between MC truth and Rec.→ The error is estimated correctly.

The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization $(Re\delta \tilde{F}_{2A}^{\gamma})$

 $(Re\delta \tilde{F}_{2A}^Z)$

AWLC2017

The distributions of $\omega - \Omega$ (aft. the quality cut)

"Left" polarization $(Re\delta \tilde{F}_{2A}^{\gamma})$

 $(Re\delta \tilde{F}_{2A}^Z)$

23

Fit of the CP-Violating form factors

Results of 4 CPV form factors fit

Before quality cut (total efficiency 77%)

$\int \mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma}$	-0.0196 ± 0.0185
$\mathcal{R}e \ \delta \tilde{F}_{2A}^{Z}$	$+0.0307 \pm 0.0357$
$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma}$	-0.0324 ± 0.0177
$\mathcal{I}m \ \delta \tilde{F}_{2A}^{Z}$	$+0.0111 \pm 0.0239$

 $\chi^2_{\text{test}} = 5.0 \Leftrightarrow 29\% \text{ CL}$

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, total efficiency 28%)

$\int \mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma}$	-0.0022 ± 0.0287
$\mathcal{R}e \ \delta \tilde{F}_{2A}^{Z}$	$+0.0423 \pm 0.0567$
$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma}$	-0.0026 ± 0.0300
$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\overline{Z}}$	$+0.0148 \pm 0.0419$

 $\chi^2_{\text{test}} = 0.64 \Leftrightarrow 96\% \text{ CL}$

Relation of the helicity angles of μ^{\pm} and $\omega - \Omega$

When we don't use the $\phi_{\mu^{\pm}}^{W^{\pm}}$ or $(\phi_{\mu^{\pm}}^{W^{\pm}}, \theta_{\mu^{\pm}}^{W^{\pm}})$, the $\omega - \Omega$ distribution becomes sharper, hence the sensitivity becomes lower.

→ $(\phi_{\mu^{\pm}}^{W^{\pm}}, \theta_{\mu^{\pm}}^{W^{\pm}})$ has a sensitivity to the ttZ/γ .

Summary

- Di-leptonic state analysis produces the 9 helicity angles which are sensitive to the form factors.
- **Reconstruct top quark imposing the kinematical constraints**
 - ISR significantly affects the assignment problem of b-jets
 - The quality cut improves the fraction of wrong assignment of b-jets, hence the angular distributions.

Fit the form factors with the Matrix element method

- CPC : After quality cut, results are consistent with SM.
- CPV : The wrong fraction has no effects on the bias, but it will dilute the CPV effects if we use a CPV sample.

Back up

Suppression of $\gamma\gamma \rightarrow$ hadrons & b-jet reconstruction

Particles from $\gamma\gamma \rightarrow$ hadrons are mostly emitted along the beam direction. The direction of the b-jet is affected by these particles.

Suppress these particles using the kt algorithm (R=1.5).

 \rightarrow The direction of the b-jet is improved.

The polar angle distribution b-jets. A: without the suppression of $\gamma\gamma \rightarrow$ hadrons, B: with the suppression of $\gamma\gamma \rightarrow$ hadrons

Scalar product, $\widehat{\eta}_{t,\mathrm{MC}} \cdot \widehat{\eta}_{t,\mathrm{Rec.}}$

Kinematical reconstruction of top

To select the optimal solution, we compare E_b and $E_{\overline{b}}$ between calculated by (θ_t, ϕ_t) and measured by the b-jet reconstruction.

Compute χ_b^2 for each candidate \rightarrow **Pick one which has the smallest** χ_b^2

Luminosity spectrum

Because we impose the initial state constraints, the events which have low \sqrt{s} are badly reconstructed.

The quality cut reduces low \sqrt{s} events, but there are still a tail.

Luminosity spectrum

Tried to fit the energy of ISR photon along beam direction;

$$e^+e^- \rightarrow b\overline{b}\mu^+\nu\mu^-\overline{\nu} + \gamma_{\rm ISR}$$

- \rightarrow Another parameter, K
- $|K| = E_{\gamma}/250$, hence $\sqrt{s} = 500 * \sqrt{1 |K|}$
- If γ is emitted in the $e^{-}(e^{+})$ direction, K is positive (negative).

Then one minimizes $\chi_{tot}^2 (\theta_t, \phi_t, K)$; $\chi_{tot}^2 (\theta_t, \phi_t, K) = \chi_{tot}^2 (\theta_t, \phi_t, K) - 2 \log PDF_K(K)$ \rightarrow Reconstructed \sqrt{s} don't correlate MC truth. \rightarrow The constraints are not enough.

Now we fix K = 0 (i.e. use $\chi^2_{tot}(\theta_t, \phi_t)$)

\widetilde{F}_{2V}^{Z} fit (The simplest case)

Other ways to reduce the bias

• Convolve the $|M|^2$ with the resolution function of the helicity angles

• Use other quantities for the quality cut.

eg)
$$\left|\chi^2_{tot,caseA1(B1)} - \chi^2_{tot,caseA2(B2)}\right|$$

\widetilde{F}_{2V}^{Z} Fit (The simplest case)

(Fix the other form factors at the SM)

Before quality cut

 $\delta \tilde{F}_{2V}^Z = 0.117 \pm 0.033$, $\chi^2_{\text{test}} = 12.6$ (confidence level = 0.03%)

6 CPC form factors fit

Fit 6 form factors $(\tilde{F}_{1V}^{\gamma}, \tilde{F}_{1V}^{Z}, \tilde{F}_{1A}^{\gamma}, \tilde{F}_{1A}^{Z}, \tilde{F}_{2V}^{\gamma}, \tilde{F}_{2V}^{Z})$

Before quality cut

 $< \sigma_F > = 0.021, \chi^2 = 141$ (confidence level ~ 0 %)

4 CP Violating Form Factors Fit

Fit 4 form factors $\left(Re\tilde{F}_{2A}^{\gamma}, Re\tilde{F}_{2A}^{Z}, Im\tilde{F}_{2A}^{\gamma}, Im\tilde{F}_{2A}^{Z}\right)$

Before quality cut

 $< \sigma_F >= 0.026$, $\chi^2 = 8.6$ (confidence level = 7.2 %)

After quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, efficiency 35%)

 $< \sigma_F >= 0.038$, $\chi^2 = 3.7$ (confidence level = 45 %)

The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization

"Right" polarization

The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization

"Right" polarization

