Top electroweak couplings study
 using di-leptonic state at $\sqrt{s}=500 \mathrm{GeV}$, ILC

 with the Matrix Element Method

 with the Matrix Element Method}

AWLC2017, SLAC
 Yo Sato ${ }^{A}$

Akimasa Ishikawa ${ }^{\text {A }}$, Emi Kou ${ }^{\text {B, Francois Le Diberder }}$, Hitoshi Yamamoto ${ }^{\text {A }}$, Junping Tian, Keisuke FujiiD,
Tohoku University ${ }^{\text {A }}$, LAL ${ }^{\text {B }}$, University of Tokyo ${ }^{\text {C }}$, KEK ${ }^{\text {D }}$

Outline

Motivation

Kinematical reconstruction of top quark

- Strategy of kinematical reconstruction
- Fraction of wrong assignment of b-jets
- Helicity angles computation

Matrix element method analysis

- Fit of CP-Conserving form factors
- Fit of CP-Violating form factors

Summary

Top EW Couplings Study

\square Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
\rightarrow Top EW couplings are good probes for New physics behind EWSB

$$
\left.\left.\mathcal{L}_{\mathrm{int}}=\sum_{v=\gamma, Z} g^{v}\left[V_{l}^{v} \bar{t} \gamma^{l}\left(F_{1 V}^{v}\right)+F_{1 A}^{v}\right)_{\gamma}\right) t+\frac{i}{2 m_{t}} \partial_{\nu} V_{l} \bar{t} \sigma^{l \nu}\left(F_{2 V}^{v}+F_{2 A}^{v} \gamma_{5}\right) t\right]
$$

In new physics models, such as composite models, the predicted deviation of coupling constants, $g_{L}^{Z}, g_{R}^{Z}\left(=F_{1 V}^{Z} \bar{\mp} F_{1 A}^{Z}\right)$ from SM is typically 10%

Di-leptonic State of the top pair production

Top pair production has three different final states:

- Fully-hadronic state $\left(e^{+} e^{-} \rightarrow t \bar{t} \rightarrow b \bar{b} q \bar{q} q \bar{q}\right) 46.2$ \%
- Semi-leptonic state $\left(e^{+} e^{-} \rightarrow t \bar{t} \rightarrow b \bar{b} q \bar{q} l v\right) 43.5 \%$
- Di-leptonic state $\left(e^{+} e^{-} \rightarrow t \bar{t} \rightarrow b \bar{b} l v l v\right) 10.3 \%$

Advantage

- 9 helicity angles can be computed (details will be described later)
\rightarrow Higher sensitivity to the form factors
Difficulty
- Two missing neutrinos \rightarrow Difficult to reconstruct top quark.

Develop the reconstruction process in realistic situation

Set Up of Analysis

Situation	On / Off
Full simulation of ILD	On
Hadronization	On
Gluon emission from top	On
ISR/BS	On
$\mathbf{Y Y} \rightarrow$ hadrons	On
bkg. events	Off (ongoing)

Sample (Only signal)	Di-muonic state $e^{+} e^{-} \rightarrow b \bar{b} \mu^{+} v \mu^{-} \bar{v}$
$\sqrt{\boldsymbol{s}}$	500 GeV
Polarization $\left(\boldsymbol{P}_{e^{-}}, \boldsymbol{P}_{e^{+}}\right)$	$(-0.8,+0.3)$ "Left" / (+0.8, -0.3) "Right"
Integrated luminosity	$500 \mathrm{fb}{ }^{-1}(50 / 50$ between Left and Right)
Generator	Whizard
Detector	ILD_01_v05 (DBD ver.)

Reconstruction Process

> Isolated leptons tagging

- Number of isolated leptons $=2 \&$ Opposite charge each of two
$>$ Suppression of $\mathrm{\gamma Y} \rightarrow$ hadrons
- kt algorithm (cf. the Semi-leptonic analysis, $\mathrm{R}=1.5$)
> b-jet reconstruction
- LCFI Plus (Durham algorithm)
- The b-charge measurement is not used
$>$ Kinematical reconstruction of top quark

Kinematical Reconstruction of top quark

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{t} \overline{\boldsymbol{t}} \rightarrow \boldsymbol{b} \overline{\boldsymbol{b}} \boldsymbol{\mu}^{+} \boldsymbol{v} \boldsymbol{\mu}^{-} \overline{\boldsymbol{v}}$
Measurable $\left[\begin{array}{l}\text { muon's : } E_{\mu^{+}}, \theta_{\mu^{+}}, \phi_{\mu^{+}}, E_{\mu^{-}}, \theta_{\mu^{-}}, \phi_{\mu^{-}} \\ \underline{\text { b-jet's }: ~} E_{b 1}, \theta_{b 1}, \phi_{b 1}, E_{b 2}, \theta_{b 2}, \phi_{b 2}\end{array}\right.$
Missing $\quad\left[\right.$ neutrino's: $E_{v}, \theta_{v}, \phi_{v}, E_{\bar{v}}, \theta_{\bar{v}}, \phi_{\bar{v}}$ => 6 unknowns

To recover them, impose the kinematical constraints;

- Initial state constraints : $\left(\sqrt{s}, \vec{P}_{\text {init. }}\right)=(500, \overrightarrow{0})$
- Mass constraints : $m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}$
=> 8 constraints ($\mathbf{2}$ in excess)
We don't need $E_{b 1}$ and $E_{b 2}$ which are relatively difficult to reconstruct.
\rightarrow Just use to decide the assignment of b-jets

Kinematical Reconstruction of top quark

To detect the solution, we solve the following equations.

$$
E_{\mu^{ \pm}}^{W^{ \pm}} \text {rest frame }\left(\theta_{t}, \phi_{t}\right)=m_{W^{ \pm}} / 2\left(\text { Red }: \mu^{+}, \text {Green : } \mu^{-}\right)
$$

assignment \mathbf{A} (correct), $b 1=b, b 2=\bar{b}$

assignment \mathbf{B} (wrong), $b 1=\bar{b}, b 2=b$

Typically, 4 candidates exist for each event.
We need to select the optimal solution from these candidates.

Kinematical Reconstruction of top quark

$$
\chi_{b}^{2}\left(\theta_{t}, \phi_{t}\right) \equiv\left(\frac{E_{b}\left(\theta_{t}, \phi_{t}\right)-E_{b}^{\text {meas. }}}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}+\left(\frac{E_{\bar{b}}\left(\theta_{t}, \phi_{t}\right)-E_{\bar{b}}^{\text {meas. }}}{\sigma\left[E_{\bar{b}}^{\text {meas. }}\right]}\right)^{2}=2 \text { (Blue) }
$$

assignment \mathbf{A} (correct), $b 1=b, b 2=\bar{b}$

assignment \mathbf{B} (wrong), $b 1=\bar{b}, b 2=b$

The candidate A 1 has the minimum χ_{b}^{2}
\rightarrow The assignment A is selected and the solution is $\left(\theta_{t}, \phi_{t}\right) \simeq(0.5,-0.35)$

Kinematical Reconstruction of top quark

Technically, to obtain the solution, we minimize $\chi_{\text {tot }}^{2}$;

$$
\chi_{t o t}^{2}\left(\theta_{t}, \phi_{t}\right)=\chi_{\mu}^{2}\left(\theta_{t}, \phi_{t}\right)+\chi_{b}^{2}\left(\theta_{t}, \phi_{t}\right)
$$

where $\chi_{\mu}^{2}\left(\theta_{t}, \phi_{t}\right) \equiv\left(\frac{E_{\mu^{+}}^{\left(W^{+} \text {rest frame) }\right)}\left(\theta_{t}, \phi_{t}\right)-m_{W^{+} / 2}}{\sigma\left[E_{\mu^{+}}^{\left(W^{+} \text {rest frame }\right)}\right]}\right)^{2}+\left(\frac{E_{\mu^{-}}^{\left(W^{-} \text {rest frame }\right)}\left(\theta_{t}, \phi_{t}\right)-m_{W^{-} / 2}}{\sigma\left[E_{\mu^{-}}^{\left(W^{-} \text {rest frame }\right)}\right]}\right)^{2}$
χ_{μ}^{2} is dominant to determine $\left(\theta_{t}, \phi_{t}\right)$ because $\sigma\left[E_{\mu}^{(W \text { rest frame })}\right] \ll \sigma\left[E_{b}\right]$

$\chi_{t o t}^{2}$ distribution

$F_{\text {wrong }}$: Fraction of the Wrong Assignment of b-jets

$\boldsymbol{F}_{\text {wrong }}$ (the fraction of the wrong assignment of b-jets) $=\mathbf{2 2} \%$
When we use samples not including ISR, $F_{\text {wrong }}=8 \%$
\rightarrow ISR significantly affects the assignment problem.
We use two quantities to reduce $F_{\text {wrong }}$
$\chi_{t o t}^{2}$ (as mentioned)

$$
\Delta \chi_{t o t}^{2}=\left|\chi_{t o t, \text { assignment } \mathrm{A}}^{2}-\chi_{t o t, \text { assignment } \mathrm{B}}^{2}\right|
$$

$F_{\text {wrong }}$: Fraction of the Wrong Assignment of b-jets

We investigate $F_{\text {wrong }}$ and the efficiency varying the set of criteria for $\left(\chi_{t o t}^{2}, \Delta \chi_{t o t}^{2}\right)$

The polar angle distribution of top is improved by the quality cut.

$$
\begin{aligned}
& \chi_{\text {tot }}^{2}<5, \Delta \chi_{\text {tot }}^{2}>6 \\
& \left(F_{\text {wrong }}=5.0 \%\right.
\end{aligned}
$$

$$
\text { total efficiency }=28 \%)
$$

Helicity Angles Computation

All final state particles including two neutrinos can be calculated. The 9 helicity angles which are related to the $t t Z / \gamma$ vertex are computed.
$\theta_{t}, \theta_{W^{+}}^{t \text { frame }}, \phi_{W^{+}}^{t \text { frame }}, \theta_{\mu^{+}}^{W^{+} \text {frame }}, \phi_{\mu^{+}}^{W^{+}}$frame $, \theta_{W^{-}}^{\bar{E} \text { frame }}, \phi_{W^{-}}^{\overline{\text { E fame}}}, \theta_{\mu^{-}}^{W^{-} \text {frame }}, \phi_{\mu^{-}}^{W^{-} \text {frame }}$
(G. L. Kane, G. A. Ladinsky, C.-P. Yuan, Phys.Rev. D45 (1992) 124-141)
eg)
$\cos \theta_{W^{+}}^{t \text { frame }}$
$\cos \theta_{\mu^{+}}^{W^{+} \text {frame }}$

$\chi_{t o t}^{2}<5, \Delta \chi_{t o t}^{2}>6$

AWLC2017

Matrix Element Method Analysis

Matrix element method is based on the maximum likelihood method.

$$
-2 \log L(F)\left(=\chi^{2}(F)\right)=-2\left(\sum_{e=1}^{N_{\text {event }}} \log |M|^{2}\left(\Phi_{e}, F\right)-N(F)\right)
$$

$|M|^{2}$: the full matrix element, Φ_{e} : the 9 helicity angles, F : the form factors, $N(F)$: the expected number of events.

The minimization of $\chi^{2}(F)$ automatically introduces the derivatives;

$$
\omega_{i}\left(\Phi_{e}\right)=\left.\frac{1}{|M|^{2}\left(\Phi_{e}\right)} \frac{\partial|M|^{2}\left(\Phi_{e}\right)}{\partial F_{i}}\right|_{F \text { at } S M}, \quad \Omega_{i}=\left.\frac{1}{N} \frac{\partial N}{\partial F_{i}}\right|_{F \text { at } S M}
$$

The results of fit are related with $\omega_{i}\left(\Phi_{e}\right)$ and Ω_{i};

- $\delta F_{i}\left(=F_{\text {fit }}-F_{\mathrm{SM}}\right) \simeq \frac{\left\langle\omega_{i}-\Omega_{i}\right\rangle}{\left\langle\left(\omega_{i}-\Omega_{i}\right)^{2}\right\rangle}$
- covariance matrix, $V_{i j}$;

$$
V_{i j}^{-1}=N_{\text {event }}<\left(\omega_{i}-\Omega_{i}\right)\left(\omega_{j}-\Omega_{j}\right)>
$$

Fit of the CP-Conserving form factors

Result of $\delta \widetilde{F}_{1 V}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77\%)

$$
\delta \widetilde{F}_{1 V}^{\gamma}=0.0223 \pm 0.0066, \chi_{\text {test }}^{2}=11.4 \Leftrightarrow 0.07 \% \mathrm{CL}
$$

The $\omega-\Omega$ distribution of the wrong assignment (Green) is

- shifted to positive \rightarrow bias
- blunter \rightarrow over estimates the precision
${ }^{*} \chi_{\text {test }}^{2}=\sum \delta F_{i} V_{i j}^{-1} \delta F_{j}:$ the chi-square test

Fit of the CP-Conserving form factors

Result of $\delta \widetilde{F}_{1 V}^{\gamma}$ fit (the others are fixed at SM)
Before the quality cut (total efficiency 77\%)

$$
\delta \widetilde{F}_{1 V}^{\gamma}=0.0223 \pm 0.0066, \chi_{\text {test }}^{2}=11.4 \Leftrightarrow 0.07 \% \mathrm{CL}
$$

After the quality cut ($\chi_{\text {tot }}^{2}<5 \& \Delta \chi_{\text {tot }}^{2}>6$, total efficiency 28\%)

$$
\delta \tilde{F}_{1 V}^{\gamma}=0.0075 \pm 0.0115, \chi_{\text {test }}^{2}=0.43 \Leftrightarrow 51 \% \mathrm{CL}
$$

Good agreement between MC truth and Rec.
\rightarrow The bias disappears.
\rightarrow The error becomes larger $(\sim \sqrt{N})$

The distributions of $\omega-\Omega$ (bef. the quality cut)

"Left" polarization
$\left(\delta \widetilde{F}_{1 V}^{\gamma}\right)$

$\left(\delta \tilde{F}_{1 A}^{Z}\right)$

($\delta \widetilde{F}_{1 V}^{Z}$)

$\left(\delta \tilde{F}_{2 V}^{\gamma}\right)$

$\left(\delta \widetilde{F}_{1 A}^{\gamma}\right)$

$\left(\delta \widetilde{F}_{2 V}^{Z}\right)$

The distributions of $\omega-\Omega$ (aft. the quality cut)

"Left" polarization
$\left(\delta \tilde{F}_{1 V}^{\gamma}\right)$

$\left(\delta \tilde{F}_{1 A}^{Z}\right)$

($\delta \widetilde{F}_{1 V}^{Z}$)

$\left(\delta \tilde{F}_{2 V}^{\gamma}\right)$

$\left(\delta \widetilde{F}_{1 A}^{\gamma}\right)$

$\left(\delta \tilde{F}_{2 v}^{Z}\right)$

Fit of the CP-Conserving form factors

Results of 6 CPC form factors fit
Before quality cut (total efficiency 77\%)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\mathcal{R} e & \delta \tilde{F}_{1 V}^{\gamma} & +0.0188 \pm 0.0089 \\
\mathcal{R} e & \delta \tilde{F}_{1 V}^{Z} & +0.0293 \pm 0.0161 \\
\mathcal{R} e & \delta \tilde{F}_{11}^{\gamma} & +0.0280 \pm 0.0133 \\
\mathcal{R} e & \delta \tilde{F}_{1 A}^{Z} & +0.2250 \pm 0.0202 \\
\mathcal{R} e & \delta \tilde{F}_{2 V}^{\gamma} & -0.0246 \pm 0.0260 \\
\mathcal{R} e & \delta \tilde{F}_{2 V}^{Z} & +0.1448 \pm 0.0435
\end{array}\right]} \\
& \chi_{\text {test }}^{2}=166 \Leftrightarrow \sim 0 \% \text { CL }
\end{aligned}
$$

After quality cut ($\chi_{\text {tot }}^{2}<5 \& \Delta \chi_{t o t}^{2}>6$, total efficiency 28\%)

$$
\begin{aligned}
& {\left[\mathcal{R} e \delta \tilde{F}_{1 V}^{\gamma}+0.0088 \pm 0.0154\right]} \\
& \mathcal{R} e \delta \tilde{F}_{1 V}^{Z} \quad+0.0339 \pm 0.0270 \\
& \mathcal{R} e \delta \tilde{F}_{1 A}^{\gamma} \quad+0.0233 \pm 0.0221 \\
& \mathcal{R} e \delta \tilde{F}_{1 A}^{Z} \quad+0.0704 \pm 0.0340 \\
& \mathcal{R} e \delta \tilde{F}_{2 V}^{\gamma}+0.0788 \pm 0.0461 \\
& \left.\mathcal{R} e \delta \tilde{F}_{2 V}^{Z} \quad+0.1244 \pm 0.0762\right] \\
& \chi_{\text {test }}^{2}=10.0 \Leftrightarrow 12.5 \% \text { CL }
\end{aligned}
$$

Fit of the CP-Violating form factors

Result of $\operatorname{Re} \delta \widetilde{F}_{2 A}^{\gamma}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77\%)

$$
\operatorname{Re} \delta \widetilde{F}_{2 A}^{\gamma}=-0.0172 \pm 0.0185, \chi_{\text {test }}^{2}=0.87 \Leftrightarrow 35 \% \mathrm{CL}
$$

The histogram of $\omega-\Omega$ for $\operatorname{Re} \delta \tilde{F}_{2 A}^{\gamma}$ (before quality cut)

The $\omega-\Omega$ distribution of the wrong assignment
(Green) is

- centered at 0
\rightarrow no apparent effect on the bias $\rightarrow \chi_{\text {test }}^{2}$ is misleading
\rightarrow if we use a CP-Violating sample, the wrong assignment will dilute the effect of CPV
- blunter \rightarrow over estimates the precision
${ }^{*} \chi_{\text {test }}^{2}=\sum \delta F_{i} V_{i j}^{-1} \delta F_{j}:$ the chi-square test

Fit of the CP-Violating form factors

Result of $\operatorname{Re} \delta \widetilde{F}_{2 A}^{\gamma}$ fit (the others are fixed at SM)
Before the quality cut (total efficiency 77\%)

$$
\operatorname{Re} \delta \widetilde{F}_{2 A}^{\gamma}=-0.0172 \pm 0.0185, \chi_{\text {test }}^{2}=0.87 \Leftrightarrow 35 \% \mathrm{CL}
$$

After the quality cut ($\chi_{t o t}^{2}<5 \& \Delta \chi_{t o t}^{2}>6$, total efficiency 28\%)

$$
\operatorname{Re} \delta \tilde{F}_{2 A}^{\gamma}=-0.0052 \pm 0.0287, \chi_{\text {test }}^{2}=0.034 \Leftrightarrow 85 \% \mathrm{CL}
$$

The histogram of $\omega-\Omega$ for $\operatorname{Re} \delta \tilde{F}_{2 A}^{\gamma}$ (after quality cut)

Good agreement between MC truth and Rec.
\rightarrow The error is estimated correctly.

The distributions of $\omega-\Omega$ (bef. the quality cut)

"Left" polarization
$\left(R e \delta \widetilde{F}_{2 A}^{\gamma}\right)$

$\left(I m \delta \tilde{F}_{2 A}^{\gamma}\right)$

$\left(R e \delta \widetilde{F}_{2 A}^{Z}\right)$

$\left(\operatorname{Im} \delta \widetilde{F}_{2 A}^{Z}\right)$

The distributions of $\omega-\Omega$ (aft. the quality cut)

"Left" polarization
$\left(R e \delta \tilde{F}_{2 A}^{\gamma}\right)$

$\left(I m \delta \tilde{F}_{2 A}^{\gamma}\right)$

($\operatorname{Re\delta } \tilde{F}_{2 A}^{Z}$)

$\left(\operatorname{Im} \delta \widetilde{F}_{2 A}^{Z}\right)$

Fit of the CP-Violating form factors

Results of 4 CPV form factors fit

Before quality cut (total efficiency 77\%)

$$
\left[\begin{array}{ccc}
\mathcal{R} e & \delta \tilde{F}_{2 A}^{\gamma} & -0.0196 \pm 0.0185 \\
\mathcal{R} e & \delta \tilde{F}_{2 A}^{Z} & +0.0307 \pm 0.0357 \\
\mathcal{I} m & \delta \tilde{F}_{2 A}^{\gamma} & -0.0324 \pm 0.0177 \\
\mathcal{I} m & \delta \tilde{F}_{2 A}^{Z} & +0.0111 \pm 0.0239
\end{array}\right]
$$

$$
\chi_{\text {test }}^{2}=5.0 \Leftrightarrow 29 \% \mathrm{CL}
$$

After quality cut ($\chi_{t o t}^{2}<5 \& \Delta \chi_{t o t}^{2}>6$, total efficiency 28\%)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathcal{R} e & \delta \tilde{F}_{2 A}^{\gamma} & -0.0022 \pm 0.0287 \\
\mathcal{R} e & \delta \tilde{F}_{2 A}^{Z} & +0.0423 \pm 0.0567 \\
\mathcal{I} m & \delta \tilde{F}_{2 A}^{\gamma} & -0.0026 \pm 0.0300 \\
\mathcal{I} m & \delta \tilde{F}_{2 A}^{Z} & +0.0148 \pm 0.0419
\end{array}\right]} \\
\chi_{\text {test }}^{2}=0.64 \Leftrightarrow 96 \% \mathrm{CL}
\end{gathered}
$$

Relation of the helicity angles of $\mu^{ \pm}$and $\omega-\Omega$

$\left(R e \delta \widetilde{F}_{2 A}^{\gamma}\right)$

When we don't use the $\phi_{\mu^{ \pm}}^{W^{ \pm}}$or $\left(\phi_{\mu^{ \pm}}^{W^{ \pm}}, \theta_{\mu^{ \pm}}^{W^{ \pm}}\right)$, the $\omega-\Omega$ distribution becomes sharper, hence the sensitivity becomes lower.
$\rightarrow\left(\phi_{\mu^{ \pm}}^{W^{ \pm}}, \theta_{\mu^{ \pm}}^{W^{ \pm}}\right)$has a sensitivity to the $t t Z / \gamma$.

Summary

\square Di-leptonic state analysis produces the 9 helicity angles which are sensitive to the form factors.
\square Reconstruct top quark imposing the kinematical constraints

- ISR significantly affects the assignment problem of b-jets
- The quality cut improves the fraction of wrong assignment of b-jets, hence the angular distributions.
\square Fit the form factors with the Matrix element method
- CPC : After quality cut, results are consistent with SM.
- CPV : The wrong fraction has no effects on the bias, but it will dilute the CPV effects if we use a CPV sample.

Back up

Suppression of $\gamma\rangle \rightarrow$ hadrons \& b-jet reconstruction

Particles from $\gamma\rangle \rightarrow$ hadrons are mostly emitted along the beam direction. The direction of the b-jet is affected by these particles.

Suppress these particles using the kt algorithm ($\mathrm{R}=1.5$).
\rightarrow The direction of the b-jet is improved.

The polar angle distribution b-jets. A: without the suppression of $\gamma \gamma \rightarrow$ hadrons, B : with the suppression of $\gamma \gamma \rightarrow$ hadrons

Scalar product, $\widehat{\boldsymbol{\eta}}_{t, \mathrm{MC}} \cdot \widehat{\boldsymbol{\eta}}_{t, \text { Rec. }}$

Kinematical reconstruction of top

To select the optimal solution, we compare E_{b} and $E_{\bar{b}}$ between calculated by $\left(\theta_{t}, \phi_{t}\right)$ and measured by the b-jet reconstruction.

$E_{b}\left(\theta_{t}, \phi_{t}\right)$ in the case of assignment A

$$
\chi_{b}^{2}\left(\theta_{t}, \phi_{t}\right)=\left(\frac{E_{b}\left(\theta_{t}, \phi_{t}\right)-E_{b}^{\text {meas. }}}{\sigma\left[E_{b}^{\text {meas. }}\right]}\right)^{2}+\left(\frac{E_{\bar{b}}\left(\theta_{t}, \phi_{t}\right)-E_{\bar{b}}^{\text {meas. }}}{\sigma\left[E_{\bar{b}}^{\text {meas. }}\right]}\right)^{2}
$$

Compute χ_{b}^{2} for each candidate \rightarrow Pick one which has the smallest χ_{b}^{2}

Luminosity spectrum

Because we impose the initial state constraints, the events which have low \sqrt{s} are badly reconstructed.

Luminosity spectrum
Black : Total events, Red : After quality cut

Ratio of luminosity spectrum (Red/Black)

The quality cut reduces low \sqrt{s} events, but there are still a tail.

Luminosity spectrum

Tried to fit the energy of ISR photon along beam direction;

$$
e^{+} e^{-} \rightarrow b \bar{b} \mu^{+} v \mu^{-} \bar{v}+\gamma_{\mathrm{ISR}}
$$

\rightarrow Another parameter, K

- $|K|=E_{\gamma} / 250$, hence $\sqrt{s}=500 * \sqrt{1-|K|}$
- If γ is emitted in the $e^{-}\left(e^{+}\right)$direction, K is positive (negative).

Then one minimizes $\chi_{\text {tot }}^{2}{ }^{\prime}\left(\theta_{t}, \phi_{t}, K\right)$;
$\chi_{t o t}^{2}{ }^{\prime}\left(\theta_{t}, \phi_{t}, K\right)=\chi_{t o t}^{2}\left(\theta_{t}, \phi_{t}, K\right)-2 \log \operatorname{PDF}_{K}(K)$
\rightarrow Reconstructed \sqrt{s} don't correlate MC truth.
\rightarrow The constraints are not enough.
Now we fix $K=0$ (i.e. use $\chi_{t o t}^{2}\left(\theta_{t}, \phi_{t}\right)$)

\sqrt{s} (MC Truth vs. Rec.)

$\widetilde{F}_{2 V}^{Z}$ fit (The simplest case)

Other ways to reduce the bias

- Convolve the $|M|^{2}$ with the resolution function of the helicity angles

The deviation of each helicity angles

- Use other quantities for the quality cut.

$$
\text { eg) }\left|\chi_{t o t, \text { caseA1(B1) }}^{2}-\chi_{t o t, \text { caseA2(B2) }}^{2}\right|
$$

$\widetilde{F}_{2 V}^{Z}$ Fit (The simplest case)

(Fix the other form factors at the SM)
Before quality cut
$\delta \widetilde{F}_{2 V}^{Z}=0.117 \pm 0.033, \chi_{\text {test }}^{2}=12.6$ (confidence level $=0.03 \%$)

After quality cut ($\chi_{\text {tot }}^{2}<5 \& \Delta \chi_{\text {tot }}^{2}>6$, efficiency 36\%)
$\delta \widetilde{F}_{2 V}^{Z}=0.096 \pm 0.055, \chi_{\text {test }}^{2}=3.0$ (confidence level $=8.3 \%$)

6 CPC form factors fit

Fit 6 form factors $\left(\tilde{F}_{1 V}^{\gamma}, \tilde{F}_{1 V}^{Z}, \tilde{F}_{1 A}^{\gamma}, \tilde{F}_{1 A}^{Z}, \tilde{F}_{2 V}^{\gamma}, \tilde{F}_{2 V}^{Z}\right)$

Before quality cut

$<\sigma_{F}>=0.021, \chi^{2}=141$ (confidence level $\sim 0 \%$)

After quality cut ($\chi_{t o t}^{2}<5 \& \Delta \chi_{t o t}^{2}>6$, efficiency 36\%)
$<\sigma_{F}>=0.035, \chi^{2}=10.5$ (confidence level $=11 \%$)

4 CP Violating Form Factors Fit

Fit 4 form factors $\left(\operatorname{Re} \tilde{F}_{2 A}^{\gamma}, \operatorname{Re} \tilde{F}_{2 A}^{Z}, \operatorname{Im} \tilde{F}_{2 A}^{\gamma}, \operatorname{Im} \tilde{F}_{2 A}^{Z}\right)$
Before quality cut
$\left\langle\sigma_{F}\right\rangle=0.026, \chi^{2}=8.6$ (confidence level $=7.2 \%$)

χ^{2} vs Efficiency

χ^{2} vs $F_{\text {wrong }}$

After quality cut ($\chi_{\text {tot }}^{2}<5 \& \Delta \chi_{t o t}^{2}>6$, efficiency 35\%)
$\left\langle\sigma_{F}\right\rangle=0.038, \chi^{2}=3.7$ (confidence level $=45 \%$)

The distributions of $\omega-\Omega$ (bef. the quality cut)

"Left" polarization

"Right" polarization

The distributions of $\omega-\Omega$ (bef. the quality cut)

"Left" polarization

"Right" polarization

