

High Energy Accelerator Experiments Group

Tohoku University

STUDY OF CHARGED HIGGS BOSONS SEARCH AT THE ILC FOR A COLLISION ENERGY OF 1 TEV

Presentation by Christian Drews

Academic advisors:

Professor Hitoshi Yamamoto (Tohoku Uni.) Professor Arno Straessner (TU Dresden)

Overview

- Full simulation study of ILC/ILD
- $m_{H\pm} = 350 \text{ GeV}$ cross section = 9 fb $BR(H\pm \rightarrow bt) = 90\%$

 σ/fb

 $\mathbf{5}$

Cross section

- $\sigma \approx 9$ fb with P = (-80%, 20%) 10.4 fb
- $\mathcal{L} = 1000 \ 1/\text{fb}$
- Hadronic:
- Semileptonic: 3200 events

Source: A. Arbey et al. "Status of the Charged Higgs Boson in Two Higgs Doublet Models." In: (2017). arXiv: 1706.07414 [hep-ph].

a full one-loop analysis Heinemeyer, S. and Schappacher, C. Eur. Phys. J. (2016)

 $M_{H^{\pm}}$

Beam background reduction with kt-Algorithm

Reconstructed H⁺ and H⁻ mass with realistic clustering and pairing with generator information

Jet pairing

- Jet pairing with chi squared minimization
 - j_1 , j_2 , j_3 and j_4 jets with highest b-tag
 - For semi-leptonic: j_7 and j_8 are neutrino and lepton

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

	w/o overlay	R: 1.3	with overlay	
B-tag efficiency	44.6	42.5	38.0	the 4 b-jets have highest b-tag in the event
Clustering works well	50.7	49.4	40.2	For every color singlet there are 2 jets with a major fraction from this singlet
Pairing works	27.8	25.0	17.2	Jet pairing agrees with major color singlet fraction in jet

Neutrino four momentum

• Missing-Energy-Method (MEM)

$$p_{\rm vis} = \sum_{i=1}^{N_{\rm PFO}} p_i \qquad p_{\rm CMS} = (1000, 0, 0, 1000 \cdot \sin(0.014/2))$$
$$p_{\nu,\rm MEM} = (p_{\rm CMS} - p_{\rm vis})$$

- Standard for most studies
- Missing-Direction-Method (MDM)
 - Using the Direction of Missing-Energy-Method and calculation the Enerty by fixing W-Mass

$$E_{\nu,\text{NDM}} = \frac{m_W^2}{E_l(1-\alpha)} \qquad \alpha = \frac{\vec{p}_{\nu,\text{MEM}} \cdot \vec{p}_l}{|\vec{p}_{\nu,\text{MEM}}||\vec{p}_l|}$$
$$p_{\nu,\text{NDM}} = (E_{\nu,\text{NDM}}, E_{\nu,\text{NDM}} \frac{\vec{p}_{\nu,\text{MEM}}}{|\vec{p}_{\nu,\text{MEM}}|})$$

Neutrino four momentum

- Missing Momentum Method (MMM)
 - Using momentum form MEM for energy estimation

$$p_{\nu,\mathsf{MMM}} = (|\vec{p}_{\nu,\mathsf{MEM}}|,\vec{p}_{\nu,\mathsf{MEM}})$$

- Missing Transversal Momentum Method (MTMM)
 - Using only the momentum in transversal momentum

$$\frac{m_{\rm W}^2}{2} = E_{\nu}E_{\ell} - \vec{p_{\nu}}\vec{p_{\ell}} = E_l\sqrt{p_{\nu x}^2 + p_{\nu y}^2 + p_{\nu z}^2} - p_{\nu x}p_{\ell x} - p_{\nu y}p_{\ell y} - p_{\nu z}p_{\ell z}$$

has two solutions

$$p_{\nu z} = \frac{\pm K + p_{\ell z} [2(p_{\ell y} p_{\nu y} + p_{\ell x} p_{\nu x}) + m_{\rm W}^2]}{2(p_{\ell x}^2 + p_{\ell y}^2)}$$

$$K = E_l \sqrt{4[(2p_{\ell x}p_{\nu x} + m_{\rm W}^2)p_{\ell y}p_{\nu y} - p_{\ell x}^2 p_{\nu y}^2 - p_{\ell y}^2 p_{\nu x}^2 + m_{\rm W}^2 p_{\ell x} p_{\nu x}] + m_{\rm W}^4}$$

Neutrino reconstruction

Neutrino energy

MTMM	Transversal momentum
MDM	Direction
MEM	Standard with missing energy
MMM	Only using momentum

Neutrino momentum in z-direction

Event selection

- Different event selections were used
 - Static cuts
 - BDT
- Optimizations
 - Signal significance
 - Significance for correctly paired signal (BDT + separate BDTG)

Cut type	Optim. type	Mode	Sig	o. Sig	Z(h)	$t\bar{t}Z$	$t\bar{t}b\overline{b}$	$t\bar{t}(sl)$	$t\bar{t}(h)$	$t\bar{t}h(sl)$	$t\bar{t}h(h)$	other
Static cuts		(h)	1982	46	0	138	106	454	16	200	12	0
Static cuts		(sl)	3090	586	139	208	181	95	678	53	327	26
Static cuts	corr. paired	(h)	579	699	0	50	61	112	2	103	4	0
Static cuts	corr. paired	(sl)	721	1154	0	46	54	12	122	12	121	0
BDT		(h)	2156	59	0	136	104	363	12	206	18	5
BDT		(sl)	3495	519	139	215	161	59	640	39	373	23
BDT	corr. paired	(h)	671	483	0	24	27	65	2	54	2	0
BDT	corr. paired	(sl)	865	936	0	18	3 0	5	63	4	69	0

Table 2.10: Remaining background after the event selections; (h) stands for hadronic and (sl) stands for semi-leptonic

Mass measurement

- Template method
 - Compare mass distribution shape -> calculation Chi^2
 - Get uncertainty from Chi^2 parabola
- Shape method
 - Get shape of BG, correctly paired signal and false paired signal
 - Calibrate fitted mean to Higgs mass
- Combined method
 - Reduce fitting variables to Higgs mass from cor. and false paired signal

Template method

Shape method

• Get signal shape (Static Cuts)

Shape method

• Get background shape (Static Cuts)

Background fit to BiGauss (original)

Background p.d.f. and generated data set

Added fit

- Added fit for different event selections for shape method
- All fit parameter fixed except mean of signal distributions
- Background
- Signal (solid)
 - Wrong paired signal (dashed)
 - Correctly paired signal

Shape method – mass estimation (BDT – correctly paired)

- Linear regression for signal distribution maximum and generated mass
- Test data set (blue)

MC toy with varied cross section (BDT – correctly paired)

• Result from 10 000 toy MC

MC toy with varied cross section (BDT – correctly paired)

∆ m / GeV 1.6 stat. cut stat. cut - corr. paired 1.4 BDT 1.2 BDT - corr. paired BDT - corr. paired (w/o BG) BDT - corr. paired (h) 0.8 BDT - corr. paired (sl) 0.6 0.4 0.2<u>⊫</u>____2 10 12 14 16 18 4 6 8 20 cross section / fb

Mass uncertainty with reduced shape method

- Result from 10 000 toy MC samples
- 0.5 GeV mass precision
- Optimization for correctly paired signal beneficial

Result

- 0.5 GeV mass precision
- Neutrino four momentum reconstruction with Missing Momentum Method was used
- Missing Transversal Momentum Method has great potential

				Corr. pair			mass precision
Cut type	Optim. type	Mode	Signif.	Signif.	Effi.	Purity	with $\sigma = 9~{ m fb}$
Static cuts		hadronic	44.6	17.9	65~%	64 %	0 56 CoV
Static cuts		semi-lep.	36.5	17.3	43~%	67~%	0.00 Gev
Static cuts	corr. paired	hadronic	37.2	21.9	62~%	66 %	0.54 CoV
Static cuts	corr. paired	semi-lep.	31.5	19.0	55~%	63~%	0.54 Gev
BDT		hadronic	49.1	20.9	73~%	$67 \ \%$	0 53 CeV
BDT		semi-lep.	38.6	19.4	46~%	71~%	0.00 Gev
BDT	corr. paired	hadronic	38.5	26.6	74~%	82~%	0.47 GeV
BDT	corr. paired	semi-lep.	31.5	23.0	64~%	79~%	0.47 Gev

Backup

Christian Drews

Study of charged Higgs bosons search at the ILC for a collision energy of 1 TeV

Cross section

- $\sigma \approx 9$ fb with P = (-80%,20%) 10.4 fb
- $\mathcal{L} = 1000 \ 1/\text{fb}$
- N = 10400 H^{\pm} events
- Assuming $BR(H^{\pm}->tb) = 90\%$
- BR(t -> bW) = 100%
- BR(W -> 2jets) = 67.6%
- BR(W -> ev) = 10.75
- BR(W -> ev) = 10.57
- Hadronic: 5100 events
- Semileptonic: 3200 events

Source: *Charged Higgs Boson production at ee colliders in the complex MSSM: a full one-loop analysis* Heinemeyer, S. and Schappacher, C. Eur. Phys. J. (2016)

24.10.17

Allowed parameter space

Type	U_R	D_R	L_R	λ_{UU}	λ_{DD}	λ_{LL}
I	+	+	+	$\cot \beta$	$\cot \beta$	$\cot \beta$
II	+	_	_	$\cot \beta$	$-\tan\beta$	$-\tan\beta$
III	+	_	+	$\cot \beta$	$-\tan\beta$	$\cot \beta$
IV	+	+	_	$\cot \beta$	$\cot \beta$	$-\tan\beta$

Table 1. Assignment of Z_2 charges for the right-handed fermions, and the resulting relations among Yukawa coupling matrices in the Z_2 -symmetric types of 2HDM Yukawa sectors. The Higgs doublets Φ_1 and Φ_2 have Z_2 quantum numbers – and +, respectively.

Source: A. Arbey et al. "**Status of the Charged Higgs Boson in Two Higgs Doublet Models**." In: (2017). arXiv: 1706.07414 [hep-ph].

Analysis Overview

- Isolated Lepton selection
- Reduce beam background by kt-Algorithm
- Jet-clustering and flavor tagging (LCFIplus)
- Calculating neutrino four-momentum (only semi-leptonic)
- Jet-pairing
- Extracting signal and background mass shape
- Added fit to find Higgs-mass

Find R for kt-Algorithm

Reconstructed H⁺ and H⁻ mass with realistic clustering and pairing with generator information

Chi² - Jet Pairing (hadronic)

	w/o overlay	R: 1.3	with overlay	
B-tag efficiency	44.6	42.5	38.0	the 4 b-jets have highest b-tag in the event
Clustering works well	50.7	49.4	40.2	For every color singlet there are 2 jets with a major fraction from this singlet
Pairing works	27.8	25.0	17.2	Jet pairing agrees with major color singlet fraction in jet

$$\chi^{2} = \left| \frac{(m_{j_{1}j_{2}j_{3}j_{4}})^{2} - (m_{j_{5}j_{6}j_{7}j_{8}})^{2}}{2\sigma_{H^{+}}^{2}} \right| + \left(\frac{m_{j_{2}j_{3}j_{4}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{6}j_{7}j_{8}} - M_{t}}{\sigma_{t}} \right)^{2} + \left(\frac{m_{j_{3}j_{4}} - M_{W}}{\sigma_{W}} \right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{W}} \right)^{2}$$

Lepton Selection

- Using the IsolatedLeptonTaggingProcessor
 - From MarilnReco
 - Based on MVA
- Open task: reduce false Lepton Tag in hadronic Channel
 - With event shape or b-tag
 - But actually the pairing efficiency is not effected

	Total (%)	w/o tau (%)
Lepton Tag	60.3	90.4
Correct Tag	60.0	90.0
False Lepton Tagged	0.3	0.4
Electron	29.5	89.4 (w/o tau and myon)
Myon	30.3	90.5 (w/o tau and electron)
False Lepton Tag in hadronic	2.1	