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Introduction 

 Top quark is the heaviest particle in the SM. Its large mass implies that it is 

strongly coupled to the mechanism of electroweak symmetry breaking (EWSB) 

 Top EW couplings are good probes for New physics behind EWSB 

 

 

 

 

 Di-leptonic state of top-pair production has rich observables, so one can get 

higher intrinsic sensitivity and do multi-parameters fit. 

 Out target is the di-leptonic state 
 

 Use the Matrix Element method to handle many observables 

     and many parameters simultaneously.   
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Set Up 
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𝒔 500 GeV 

Polarization (𝑷𝒆− , 𝑷𝒆+) (-0.8, +0.3) “Left” / (+0.8, -0.3) “Right” 

Integrated luminosity 
500 fb-1  

(250 fb-1  for each polarization)  

Generator 
Whizard 

(including ISR/BS, 𝛾𝛾 → hadrons) 

Detector model 
ILD_01_v05  

(TDR version) 



Sample of events 

 Signal : 𝑒𝑒 →  𝑏𝑏𝜇𝜇𝜈𝜈 

• We focus on only the di-muonic state which is 

the most accurate to be reconstructed in the di-

leptonic state. 

• This includes top pair production, single top 

production and so on. 

 Main background  

 𝑒𝑒 →  𝑏𝑏𝑙𝑙𝜈𝜈 (except for 𝑏𝑏𝜇𝜇𝜈𝜈) 

 𝑒𝑒 → 𝑞𝑞𝑙𝑙 (mainly 𝑍𝑍) 

 𝑒𝑒 →  𝑏𝑏𝑙𝜈𝑞𝑞 (mainly top pair production) 
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Process of study 

Event Reconstruction 

 Isolated muon reconstruction  

 𝛾𝛾 → hadrons suppression 

 b-jet reconstruction 

 Kinematical reconstruction    Today’s topic 

Analysis and Discussion 

 Helicity angles computation 

 Analysis with Matrix Element Method   Today’s topic 

 Optimal variables computation  Today’s topic 

 Assessment of goodness of fit  
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Kinematical Reconstruction : Strategy 

Neutrinos and photon of ISR cannot be reconstructed by detectors. 

There are 7 unknowns in di-muonic state of top pair production. 

𝑃𝑥,𝜈, 𝑃𝑦,𝜈, 𝑃𝑧,𝜈, 𝑃𝑥,𝜈 , 𝑃𝑦,𝜈 , 𝑃𝑧,𝜈 , 𝑃𝑧,𝛾ISR 

 

To recover them, we impose 8 constraints, 

• Initial state constraints : 𝐸𝑡𝑜𝑡𝑎𝑙 = 500 GeV, 𝑃total = 0 

• Mass constraints : 𝑚𝑡 = 𝑚𝑡 = 174 GeV,𝑚𝑊+ = 𝑚𝑊− = 80.4 GeV 

 

There are enough constraints  to determine the missing variables. 
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Kinematical Reconstruction : Algorithm 

Introduce 4 free parameters : 𝑷𝒙,𝝂, 𝑷𝒚,𝝂, 𝑷𝒛,𝝂, 𝑷𝒛,𝜸𝑰𝑺𝑹 

Other missing variables are defined as follows; 

𝑃𝑥,𝜈 = − 𝑃𝑥,Visible + 𝑃𝑥,𝜈 , 𝑃𝑦,𝜈 = − 𝑃𝑦,Visible + 𝑃𝑦,𝜈 , 𝑃𝑧,𝜈 = − 𝑃𝑧,Visible + 𝑃𝑧,𝜈 + 𝑃𝑧,𝛾ISR  

(All physics variables also can be computed using these parameters.) 
 

Define the likelihood function; 

𝑳𝟎 = 𝑩𝑾 𝒎𝒕, 𝟏𝟕𝟒 𝑩𝑾 𝒎𝒕 , 𝟏𝟕𝟒 𝑩𝑾 𝒎𝑾+ , 𝟖𝟎. 𝟒 𝑩𝑾 𝒎𝑾− , 𝟖𝟎. 𝟒 𝑮𝒂𝒖𝒔 𝑬𝒕𝒐𝒕𝒂𝒍, 𝟓𝟎𝟎  

(𝐵𝑊 : Breit-Wigner function, 𝐺𝑎𝑢𝑠 : Gaussian function, other parameters are written in backup) 
 

To correct the energy resolution of b-jets reconstruction, we add 2 parameters, 

𝑬𝒃, 𝑬𝒃 , and resolution functions, 𝑅, to the likelihood function. 

𝑳 = 𝑳𝟎 ∗ 𝑹 𝑬𝒃, 𝑬𝒃
𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐞𝐝 𝑹 𝑬𝒃 , 𝑬𝒃 

𝒓𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅  
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Kinematical Reconstruction 

For simplicity, we define 𝒒 = −𝟐 𝐥𝐨𝐠𝑳 + 𝑪 (scaled as the minimum value becomes 0) 
 

There are two possibilities for combination of b-jet and muon. 

 Define the best candidate as a candidate having smaller 𝒒 and 𝒒𝐦𝐢𝐧 as 𝑞 of the best 

candidate. One can check that it is true or miss combination by generator information. 

 

 

 

 

 

 

 

 Cut on 𝑞min  is useful to reduce the background and miss combination events. 
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𝑞min distribution of Left polarization events (left : whole distribution, right : zoomed one) 

𝑞min 𝑞min 



ISR photon 

Small correlations between MC and reconstructed are observed. 

 Cut on 𝑃𝑧,𝛾𝐼𝑆𝑅 or 𝑀𝑡𝑡 is useful to reduce hard ISR events. 
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Scatter plots between MC and reconstructed of Left polarization and signal events  

(left : 𝑃𝑧,𝛾ISR , right : mass of top pair) 



ISR photon 

𝑃𝑧,𝛾ISR distribution of miss combination events are wider than true combination 

 Cut on 𝑃𝑧,𝛾𝐼𝑆𝑅 is also useful to reduce miss combination events 
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𝑃𝑧,𝛾ISR distribution of Left polarization events 



Cut table 

250 fb-1 

(-0.8,+0.3) Left 
initial 𝝁+𝝁− 

b-tag1>0.8 or  

b-tag2>0.8 

𝒒𝐦𝐢𝐧 < 𝟑 &  

𝑷𝒛,𝜸 < 𝟓𝟎 𝐆𝐞𝐕 

Signal  𝒃𝒃𝝁𝝁𝝂𝝂 

(True)  
2961 

2725 

(e = 92.0 %) 

1921 
(80.9%) (e = 

80.2%) 

945 
(90.7%) (e = 

35.2%) Signal 𝒃𝒃𝝁𝝁𝝂𝝂 

(Miss) 
453 

(19.1%) 

97 
(9.3%) 

𝒃𝒃𝒍𝒍𝝂𝝂  
(except 𝒃𝒃𝝁𝝁𝝂𝝂 ) 

23609 387 335 71 

𝒃𝒃𝒍𝝂𝒒𝒒  104114 40 31 3 

𝒒𝒒𝒍𝒍 (𝒁𝒁) 91478 13800 2519 21 

𝒍𝒍  
(weight = 4) 

212274 

( 849096) 

74961 

( 299844) 

90 

( 360) 
0 

𝒍𝝂𝒍𝝂 (𝑾𝑾) 

(weight = 4) 

377058 

( 1508232) 

1884 

( 7536) 

3 

( 12) 
0 

𝒍𝒍𝒍𝝂𝒍𝝂 (𝒍𝒍𝑾𝑾) 3021 947 19 0 
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Matrix Element Method 

We assume that full matrix squared, 𝑀 2, includes up to quadratic terms 

of the form factors, hence the expected number of events also includes 

up to quadratic terms; 

𝑀 2 = 1 + 𝜔𝑖𝛿𝐹𝑖
𝑖

+ 𝜔 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

𝑀 SM
2  

𝑁 = 1 + Ω𝑖𝛿𝐹𝑖
𝑖

+ Ω 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑖
𝑖𝑗

𝑁SM 

where 𝛿𝐹𝑖 is deference of the form factor from SM.  
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Matrix Element Method 

Matrix element method is based on the maximum likelihood method and a likelihood 

function is written by 𝑀 2 and 𝑁; 

−2 log 𝐿 𝛿𝐹 = 𝜒2 𝛿𝐹 =  

−2  log 1 + 𝜔𝑖 Φ𝑒 𝛿𝐹𝑖
𝑖

+ 𝜔 𝑖𝑗 Φ𝑒 𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

𝑁event

𝑒=1

− 𝑁event log 1 + Ω𝑖𝛿𝐹𝑖
𝑖

+ Ω 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

  

where Φ𝑒 is helicity angles which have sensitivity for the form factors. 𝜒2 𝛿𝐹  is scaled 

to 0 at 𝛿𝐹 = 0. 
 

If we use the information of yields with Poisson distribution, the second term can be 

replaced as 𝑁event  Ω𝑖𝛿𝐹𝑖
SM

𝑖 +  Ω 𝑖𝑗𝛿𝐹𝑖
SM𝛿𝐹𝑗

SM
𝑖𝑗  
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Matrix Element Method 

What we must do to fit the form factors correctly is to reconstruct 𝜔𝑖 correctly. 

Indeed the results of fit are related with 𝜔𝑖 and Ω𝑖 which are called optimal variables  

 𝛿𝐹𝑖
Fit ≃  

<𝜔𝑖−Ω𝑖>

<𝜔𝑖
2>

  

 Covariance matrix, 𝑉𝑖𝑗 :   𝑉𝑖𝑗
−1 ≃ 𝑁event < 𝜔𝑖𝜔𝑗 > 
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𝜔 − Ω distribution for 𝛿𝐹1𝑉
𝑍  of Left polarization events 

Reconstructed (All Events) are 

similar with MC Truth 



Outliers  

A few events are distributed far from other events. It can be caused by detector 

effects and ISR effects, in other wards they are badly reconstructed events. 

 

 

 

 

 

 

 

 

These events easily induce biases on results of fit.  Outliers 

We fit 𝜔 − Ω distribution within a region not including outliers. Efficiency cost is only 

1.6%(0.8%) for Left(Right) polarization events. 
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𝜔 − Ω distribution for 𝛿𝐹1𝑉
𝑍  of Left 

polarization events (same as last slide) 

Outliers! 



Preliminary Results without Outliers 

Results of 10 parameters multi-fit 

 

 

 

 

 

 

      Efficiency : 35 % 

      CL(*) : 35 % (* It is discussed in backup slides) 

 

This precision is comparable with semi-leptonic state analysis considering difference 

of statistics. One can fit more parameters simultaneously. 

But there are still small biases. We have room for improvement  Next Slide 

LCWS2017, Strasbourg 16 



Improved method : Binned likelihood analysis 

Estimate the number of events in each bin of the 𝜔 distribution 

described as function of 𝛿𝐹, 𝑁𝑏 𝛿𝐹 , from the full MC simulation. 

Fit 𝑁𝑏 𝛿𝐹  to the “data” using the following 𝜒2 𝛿𝐹 . 

𝜒2 𝛿𝐹 =  
𝑛𝑏
Data − 𝑁𝑏 𝛿𝐹

2

𝑛𝑏
Data

𝑁bin

𝑏=1

 

where 𝑛𝑏
Data is the number of events in bin 𝑏 of  the “data”. 

 

This method is by construction unbiased if the full MC 

simulation describes the “data” and one can use 𝜒2 𝛿𝐹  to 

assess the goodness of fit. 
 

Example : Result of 1 parameter fit 

𝛿𝐹 1𝑉
𝑍 = 0.010 ± 0.017 (CL = 33%) 

For the multi-parameter fit, more statistics of the full MC 

simulation is required. 

LCWS2017, Strasbourg 17 

𝜔 distribution for 𝛿𝐹1𝑉
𝑍  of Left polarization events 

𝜒2(𝛿𝐹 1𝑉
𝑍 ) function 



Summary 

 Missing neutrinos and ISR/BS photon are reconstructed by kinematical 

reconstruction. 

• 𝑃𝑧,𝛾𝐼𝑆𝑅 cannot be reconstructed precisely, but it is useful to reduce the miss 

combination and hard ISR events. 
 

 𝜔 − Ω distributions, which called optimal variables, can be 

reconstructed. One rejects outliers events and fit form factors. 

 Comparable results with semi-leptonic analysis. More parameters 

can be fitted simultaneously. 
 

 Small biases are still observed. (Goodness of fit is also not so great. It is 

discussed in backup slides) 

 The binned likelihood analysis can measure the parameters without 

biases and assess goodness of fit. 
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Backup 
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Top EW Couplings Study 

 Top quark is the heaviest particle in the SM. Its large mass implies that it is 

strongly coupled to the mechanism of electroweak symmetry breaking (EWSB) 

 Top EW couplings are good probes for New physics behind EWSB 
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In new physics models, such as composite 

models, the predicted deviation of 

coupling constants, 𝑔𝐿
𝑍, 𝑔𝑅

𝑍 (= 𝐹1𝑉
𝑍 ∓ 𝐹1𝐴

𝑍 ) 

from SM is typically 10 % 



Di-leptonic State of the top pair production 

Top pair production has three different final states: 

• Fully-hadronic state 𝑒+𝑒− → 𝑡𝑡 → 𝑏𝑏 𝑞𝑞 𝑞𝑞  46.2 % 

• Semi-leptonic state 𝑒+𝑒− → 𝑡𝑡 → 𝑏𝑏 𝑞𝑞 𝑙𝜈  43.5% 

• Di-leptonic state 𝒆+𝒆− → 𝒕𝒕 → 𝒃𝒃 𝒍𝝂𝒍𝝂  10.3% 

 

Advantage 

• More observables be computed 

 Higher intrinsic sensitivity to the form factors, in principle. 

Difficulty 

• Two missing neutrinos 

• Lower statistics : 6 times less events than the semi-leptonic state 

    ((2/3 x 43.5 % ) / (4/9 x 10.3 %) = ~ 6.3 ) 
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Pre-selection 

The quality cut is necessary to reject the b-jet miss-assignment events when we 

don’t use the b-charge reconstruction. The cut might be also effective to reject 

background events. 

 

We use only two loose constraints, called Pre-selection,  before the kinematical 

reconstruction of top quark, which is useful to shorten the CPU time. 

• 1 isolated 𝝁− and 1 isolated 𝝁+ 

• 1 (or 2) jet has high b-tag value obtained by the LCFI Plus (b-tag1 > 0.8 

or b-tag2 > 0.8) 

 

Other constraints that can be considered :  

Thrust value, Visible energy, Mass of 𝜇−𝜇+, … 
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Pre-selection : Cut table 

250 fb-1 

(-0.8, +0.3) Left 
Initial 𝝁+𝝁− 

b-tag1>0.8 or  

b-tag2>0.8 

Signal 
𝒃𝒃𝝁𝝁𝝂𝝂  

2961 
2725 

(e = 92.0%) 

2374 

(e = 80.2%) 

𝒃𝒃𝒍𝒍𝝂𝝂  

(except 𝒃𝒃𝝁𝝁𝝂𝝂 ) 
23609 387 335 

𝒃𝒃𝒍𝝂𝒒𝒒  104114 40 31 

𝒒𝒒𝒍𝒍 (𝒁𝒁) 91478 13800 2519 

𝒍𝒍  
(weight = 4) 

212274 

(849096) 

74961 

( 299844) 

90 

( 360) 

𝒍𝝂𝒍𝝂 (𝑾𝑾) 

(weight = 4) 

377058 

( 1508232) 

1884 

( 7536) 

3 

( 12) 

𝒍𝒍𝒍𝝂𝒍𝝂 (𝒍𝒍𝑾𝑾) 3021 947 19 
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Pre-selection : Cut table 

250 fb-1 

(+0.8, -0.3) Right 
initial 𝝁+𝝁− 

b-tag1>0.8 or  

b-tag2>0.8 

Signal 
𝒃𝒃𝝁𝝁𝝂𝝂  

1255 
1162 

(e = 92.6%) 

1040 

(e = 82.9%) 

𝒃𝒃𝒍𝒍𝝂𝝂  

(except 𝒃𝒃𝝁𝝁𝝂𝝂 ) 
10181 160 138 

𝒃𝒃𝒍𝝂𝒒𝒒  45053 18 12 

𝒒𝒒𝒍𝒍 (𝒁𝒁) 46344 6980 1237 

𝒍𝒍  
(weight = 4) 

161371 

(64524) 

57916 

( 231664) 

61 

( 244) 
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Cut table 

250 fb-1 

(-0.8,+0.3) Right 
initial 𝝁+𝝁− 

b-tag1>0.8 or  

b-tag2>0.8 

𝒒𝐦𝐢𝐧 < 𝟑 &  

𝑷𝒛,𝜸 < 𝟓𝟎 𝐆𝐞𝐕 

Signal  𝒃𝒃𝝁𝝁𝝂𝝂 

(True)  
1255 

1162 

(e = 92.6 %) 

874 
(84.0%) (e = 

82.9%) 

437 
(94.2%) (e = 

37.0%) Signal 𝒃𝒃𝝁𝝁𝝂𝝂 

(Miss) 
166 

(16.0%) 

27 
(5.8%) 

𝒃𝒃𝒍𝒍𝝂𝝂  
(except 𝒃𝒃𝝁𝝁𝝂𝝂 ) 

10181 160 138 30 

𝒃𝒃𝒍𝝂𝒒𝒒  45053 18 12 0 

𝒒𝒒𝒍𝒍 (𝒁𝒁) 46344 6980 1237 6 

𝒍𝒍  
(weight = 4) 

161371 

( 64524) 

57916 

( 231664) 

61 

( 244) 
0 
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Helicity Angles 

All final state particles including two neutrinos can be calculated. The 9 helicity 

angles which are related to the 𝑡𝑡𝑍/𝛾 vertex can be computed. 

𝜃𝑡 , 𝜃𝑊+
𝑡 frame, 𝜙𝑊+

𝑡 frame, 𝜃𝜇+
𝑊+ frame, 𝜙

𝜇+
𝑊+ 𝑓𝑟𝑎𝑚𝑒

, 𝜃𝑊−
𝑡  𝑓𝑟𝑎𝑚𝑒

, 𝜙𝑊−
𝑡  𝑓𝑟𝑎𝑚𝑒

, 𝜃𝜇−
𝑊−𝑓𝑟𝑎𝑚𝑒

, 𝜙𝜇−
𝑊−𝑓𝑟𝑎𝑚𝑒

 

(G. L. Kane, G. A. Ladinsky, C.-P. Yuan, Phys.Rev. D45 (1992) 124-141 ) 

 

The optimal variables 𝜔 are defined at this 9-dimention phase space. 
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Relation of the helicity angles of 𝝁± and 𝝎−𝜴 

When we don’t use the 𝜙𝜇±
𝑊±

 or (𝜙𝜇±
𝑊±

, 𝜃𝜇±
𝑊±

), 

the 𝜔 − 𝛺 distribution becomes sharper, 

hence the sensitivity becomes lower. 

 (𝜙𝜇±
𝑊±

, 𝜃𝜇±
𝑊±

) has a sensitivity to the 𝑡𝑡𝑍/𝛾. 
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𝛿𝐹 2𝑉
𝛾

 

𝑅𝑒𝛿𝐹 2𝐴
𝛾

 

“Left” 

polarization 

“Left” 

polarization 



Parameters of Likelihood function 

Breit-Wigner function of mass of top and W 

𝐵𝑊 𝑚 ∝
1

1 +
𝑚 −𝑚0
𝑚0Γ0

2 

𝑚𝑡,0 = 𝑚𝑡 ,0 = 174,𝑚𝑊+,0 = 𝑚𝑊−,0 = 80.4, Γ0 = 5 

Gaussian function of Beam energy spread 

𝐺𝑎𝑢𝑠 𝐸𝑡𝑜𝑡𝑎𝑙 ∝ exp −
𝐸𝑡𝑜𝑡𝑎𝑙 − 500

0.39

2
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Energy resolution of b-jets 

𝐺 𝜎𝑗 , 𝐾; 𝐸𝑏
Measurement

∝ exp −
𝐸𝑏
Measurement − 𝐸𝑏

MC

𝜎𝑗 ∗ 𝐸𝑏
Measurement 𝐾

2

 

Define the resolution function 𝑅 as 

𝑅 = 𝑐1𝐺1 + 𝑐2𝐺2 + 𝑐3𝐺3 
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Results of  fit : 

𝑐1 = 0.50, 𝜎𝑗,1 = 0.77, 𝐾1 = 0.45 

𝑐2 = 0.48, 𝜎𝑗,2 =   6.4, 𝐾2 = 0.31 

𝑐3 = 0.02, 𝜎𝑗,3 =   4.7, 𝐾3 = 0.69 



Goodness of Fit 

The confidence level is just computed from 𝛿𝐹Fit (or 𝜒2(𝛿𝐹Fit)) 

 Need to assess goodness of fit in another way 
 

Reminder of our assumption for the Matrix Element Method 

𝑀 2 = 1 + 𝜔𝑖𝛿𝐹𝑖
𝑖

+ 𝜔 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

𝑀 SM
2 , 𝑁 = 1 + Ω𝑖𝛿𝐹𝑖

𝑖

+ Ω 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑖
𝑖𝑗

𝑁SM 

 One can define PDF as 𝑓 𝛿𝐹 =
1+ 𝜔𝑖𝛿𝐹𝑖𝑖 + 𝜔 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗𝑖𝑗

1+ Ω𝑖𝛿𝐹𝑖𝑖 + Ω 𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑖𝑖𝑗

𝑓SM where 𝑓SM =
𝑀 SM

2

𝑁SM
 is 

PDF of SM. 
 

Expected value of 𝜔𝑖 and 𝜔 𝑖𝑗 for given 𝛿𝐹 can be computed from the PDF 

< 𝜔𝑖 > 𝛿𝐹  = ∫ 𝜔𝑖𝑓 𝛿𝐹 𝑑𝜔𝑑𝜔 , < 𝜔 𝑖𝑗 > 𝛿𝐹  = ∫ 𝜔 𝑖𝑗𝑓 𝛿𝐹 𝑑𝜔𝑑𝜔  

< 𝜔𝑖 > 𝛿𝐹 ,< 𝜔 𝑖𝑗 > 𝛿𝐹  should be close to < 𝜔𝑖 >data, < 𝜔 𝑖𝑗 >dataif our 

assumption is correct. 
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Goodness of Fit 

Define 𝜒GoF,𝑖
2 𝛿𝐹  and 𝜒 GoF,𝑖𝑗

2 𝛿𝐹  to assess the Goodness of Fit. 

𝜒GoF,𝑖
2 𝛿𝐹 =

< 𝜔𝑖 >data−< 𝜔𝑖 > 𝛿𝐹
2

< 𝜔𝑖
2 >data−< 𝜔𝑖 >data

2 , 𝜒 GoF,𝑖𝑗
2 𝛿𝐹 =

< 𝜔 𝑖𝑗 >data−< 𝜔 𝑖𝑗 > 𝛿𝐹
2

< 𝜔 𝑖𝑗
2 >data−< 𝜔 𝑖𝑗 >data

2  
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Some of 𝝌𝑮𝒐𝑭,𝒊
𝟐 , 𝝌 𝑮𝒐𝑭,𝒊𝒋

𝟐  

have very large values ! 

Table of 𝜒GoF,𝑖
2 , 𝜒 GoF,𝑖𝑗

2  of Left polarization events 



Goodness of Fit : Outliers  

Large 𝜒GoF
2  implies that our assumption might be wrong. 

However, there is another possibility of reason  Outliers  

 

 

 

 

 

 

 

 

A few events are distributed far from other events. It can be caused by detector 

effects, ISR effects, etc. 

 These events might be outliers and induce so large 𝜒𝐺𝑜𝐹
2  
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𝜔 − Ω distribution for 𝛿𝐹1𝑉
𝑍  of Left 

polarization events (same as P16.) 



Goodness of Fit 

Reject events which have too large(small) 𝜔,𝜔  : 

𝜔𝑖 − Ω𝑖 > 10𝜎 𝜔𝑖
𝑆𝑀 , 𝜔 𝑖𝑗 − Ω 𝑖𝑗 > 10𝜎 𝜔𝑖𝑗

𝑆𝑀  

Criteria are selected very preliminary.   

Efficiency cost is only 1.6%(0.8%) for Left(Right) polarization events. 

 

 

 

 

 

Most of large 𝝌𝐆𝐨𝐅,𝒊
𝟐 , 𝝌 𝐆𝐨𝐅,𝒊𝒋

𝟐  become much better. It implies such large values are 

induced by outliers. Although some still have large values (~11), one may reduce them 

changing criteria for outliers. 

But some of 𝜒 GoF,𝑖𝑗
2  are still 3-4. We suppose it comes from ISR effects and detector effect 
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Preliminary Results without Outliers 

Results of 10 parameters multi-fit 

 

 

 
 

 

 

 

 

 

 

The results of fit becomes also better. 
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Preliminary Results without Outliers & ISR 

From the MC information, one can reject events having hard ISR. 

Results of 10 parameters multi-fit ( 𝑠 > 495 GeV) 
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Goodness of Fit 

Table of 𝜒GoF,𝑖
2 , 𝜒 GoF,𝑖𝑗

2  of Right polarization events  

(left : with outliers, center : without outliers, right : without outliers & ISR) 
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Improved method : Binned likelihood analysis 

𝜒2 𝛿𝐹  is defined as following; 

𝜒2 𝛿𝐹 =  
𝑛𝑏
Data − 𝑁𝑏 𝛿𝐹

2

𝑛𝑏
Data

𝑁bin

𝑏=1

 

𝑁𝑏 𝛿𝐹  is obtained from the very large full MC simulation changing 𝛿𝐹, which is called the 

template method. However, it can be also obtained by the re-weighting method 

𝑁𝑏 𝛿𝐹 =
𝑛Data

𝑁MC Simulation
 1 ∗

𝑀 2 𝛿𝐹

𝑀 SM
2

𝑒∈𝑏

 

=
𝑛Data

𝑁MC Simulation
 1+ 𝜔𝑖

Truth𝛿𝐹𝑖 +  𝜔 𝑖𝑗
Truth𝛿𝐹𝑖𝛿𝐹𝑗

𝑒∈𝑏

 

where 𝜔𝑖
Truth and 𝜔 𝑖𝑗

Truth are the optimal variables at MC truth level. Only one simulation is 

needed if one uses this method. 

Since 𝜔 Truth is a coefficient of O(𝛿𝐹2) and 𝛿𝐹 is so small, we use only 𝜔𝑖
Truth for now. 
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Improved method : Binned likelihood analysis 

In the definition of 𝜒2 𝛿𝐹 , we assume the deviation is 𝑛𝑏 . So the 𝑛𝑏  must be large (>10). 

The following likelihood function can be used even if 𝑛𝑏 is small. 

−2 log 𝐿 𝛿𝐹 = −2  

𝑛𝑏
Data ln 1 + 𝑜𝑏,𝑖𝛿𝐹𝑖

𝑖

+ 𝑜 𝑏,𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

−𝑁𝑏
SM  𝑜𝑏,𝑖𝛿𝐹𝑖

𝑖

+ 𝑜 𝑏,𝑖𝑗𝛿𝐹𝑖𝛿𝐹𝑗
𝑖𝑗

𝑁𝑏𝑖𝑛

𝑏=1

 

where 𝑜𝑏,𝑖 =
1

𝑁𝑏
𝑆𝑀 𝜔𝑖

Truth
𝑒∈𝑏 , 𝑜 𝑏,𝑖𝑗 =

1

𝑁𝑏
𝑆𝑀 𝜔 𝑖𝑗

Truth
𝑒∈𝑏 . 

This definition is more precise because we don’t use any assumptions and it is also by 

construction unbiased. However we cannot assess the goodness of fit from the likelihood 

function.  
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