

SuperKEKB加速器におけるビーム バックグラウンドの研究

2017年1月30日 修士論文発表会 素粒子実験研究室 博士課程前期2年 牛木 至

目次

- 導入
 - SuperKEKB
 - ビームバックグラウンドとコリメータによる抑制
 - BEAST II実験
- 研究内容
 - シミュレーションの概要
 - シミュレーションの調整
 - SuperKEKB Phase1シミュレーションの結果
 - SuperKEKB Phase3シミュレーションの結果
- ・まとめ

SuperKEKB加速器

- BファクトリーのKEKBをアップグレード
- 7GeV e^- , 4GeV $e^+ \rightarrow 10.58 \text{ GeV} \Upsilon(4S) \rightarrow B\overline{B}$
- Belle II検出器:崩壊過程から物質・反物質の違い(CP対称性の破れ)などを調べる
- 設計ルミノシティはKEKBの40倍の80×10³⁴ cm⁻² s⁻¹

SuperKEKBの運転Phase

Phase	期間	主な目的	Belle II	最終収束系	目標ルミノシティ
1	'16/02 – '16/06	真空改善	なし	なし	衝突なし
2	'17/10 – '18/03	ビーム衝突の調整	ほぼ全て	あり	$1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
3	'18/10 —	物理Run	全て	あり	$80 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Phase1、Phase2のBelle II検出器がないスペースにBEAST IIを入れる。

牛木 至

Phase1 ³He Crystals

Phase2

修士論文発表会

ビームバックグラウンド

- ビームパイプからビーム粒子が飛び出し、電磁シャワーや中性子を生成したもの。
- 検出器SN比の低下や検出器寿命の低下を招く。

- ビーム粒子が散乱を受けてエネルギーや運動方向がずれる。
- 散乱原因
 - Touschek効果
 - Brems(strahlung)
 - Coulomb散乱
 - Radiative Bhabha散乱
 - 2光子過程による低運動量の電子陽電子
 - シンクロトロン放射による放射光
 - ビームビーム相互作用と連続入射によるバンチ形状の乱れ

2017/1/30

牛木 至 修士論文発表会

単ビームがリング周回中に発生。 KEKBの経験から重要。

ルミノシティに比例する。

Touschek効果

- ビーム粒子はビーム軸に垂直方向にベータトロン振動をしながら進む。
- 散乱によって縦方向の運動量が軸方向に変わる。
- 一方はエネルギーを得て、他方は失う。
 - → 偏向磁石中で内側と外側、両方に膨らむ。

- エネルギーのずれはγに比例する。
- ・
 散乱角は1/γに比例し無視できる。
- 散乱確率は(ビーム電流 I_{beam})²(ビームサイズ σ_y)⁻¹に比例する。

↑振動による変化が水平方向の方が大きい ↑バンチ内の粒子数の2乗

 $\oplus B$

 $\Delta \rho = \frac{\Delta p}{r}$

ビーム-ガス散乱

- 残留ガスの原子核のもつ電場によって散乱を受ける。
- Brems(strahlung)
 - 制動輻射でエネルギーを失う。

- 偏向磁石中では内側にずれる。 \downarrow \downarrow \downarrow yx

- Coulomb散乱
 - 弾性散乱だが角度が変わる。

コリメータによるバックグラウンドの抑制

- 散乱された粒子が衝突点領域IRに到達する前に削る。
- コリメータにはKEKBタイプとSuperKEKBタイプの2種類がある。

Touschek、Bremsで水平に膨らんだ部分を削る。

・ 扁平なビームがCoulombによって等方的に膨らむことで、垂直から削りやすい。

2017/1/30

BEAST II 実験

目的

ビームバックグラウンドを測定し、

- Belle II検出器にとって十分少ないことを確認。
- 加速器パラメータに対する依存性を理解。
- シミュレーションの検証。

方法

- <u>Touschekスタディ</u> Touschekの頻度が1/σ_yに比例する。
 →他の成分から分離して測定。
- <u>Vacuumスタディ</u>
 ビーム-ガスの頻度が*PI*に比例する。
 →他の成分から分離して測定。

- <u>Injectionスタディ</u> バンチ入射のパラメータを変える。 →バックグラウンドの変化を見る。
- ・ <u>コリメータスタディ</u>
 コリメータ幅を変える。
 ・バックグラウンドの変化を見る。

シミュレーションの概要

		Phase1	Pha	ase3	
パラメータ	シンボル	$\text{LER} \cdot \text{HER}$	LER	HER	単位
ビーム電流	I_{beam}	1.0	3.6	2.6	А
粒子数/バンチ	N_b	6.28	9.04	6.53	10^{10}
バンチ数	n_b	1000	25	00	
バンチ電流	I_b	1.0	1.44	1.04	$\mathbf{m}\mathbf{A}$
エミッタンス比	$\varepsilon_y/\varepsilon_x$	0.1	0.0027	0.0028	
バンチ長	σ_z	6	(5	mm
圧力	P	10]	l	nTorr
温度	T	300	30	00	Κ

トラッキング計算

- Touschek効果・ビーム・ガス散乱のシミュレーションを行った。
 リング周回中に発生→トラッキング計算が必要
- トラッキング計算

ロスレートとビーム寿命の計算

ロスレートR: 散乱の結果、単位時間にビームパイプを飛び出す粒子数
 ビーム-ガス

$$R_{B,C} = N_{beam} \Sigma_{i} \frac{L_{i}}{L_{circ}} cn_{g} \sigma_{B,C}(s_{i})$$

$$R_{B,C} \propto Z^{2} I_{beam} P$$
単位体積あたりの原子核数n_{g} = $\frac{2P}{k_{B}T}$

$$R_T \propto I_{\rm beam}^2 \sigma_y^{-1}$$

・ビーム寿命
$$\tau$$
:ビームが全てロスするまでの時間
 $\tau = \frac{N_{\text{beam}}}{R}$

シミュレーションの調整

Bremsstrahlungのカットオフu_{min}

 $\Delta E < 0$ $\theta = 0$

- エネルギーのずれ $u = \Delta E / E \delta [u_{\min}, 1]$ で生成した。
- u_{min}を変えたときの全周ロスレートの変化を見た。

- ある値以下では上昇がなくなる。それ以下のエネルギーのずれではロスを起こさない。
- 大きすぎる u_{\min} →ロスレートの過小評価。 小さすぎる u_{\min} →トラッキング計算の無駄。
- $u_{\min} = 0.002$ に設定する。

2017/1/30

BEAST II Phase1 検出器 シミュレーションに用いる データセットのIRロス分布

IRの定義は衝突点の前後4m:|s| < 4m

ビーム軸方向の分布

垂直面内での分布 – 方位角

BEAST II Phase1 コリメータスタディとの比較

16:10 16:15

2016-05-18

- D06H3 OUTERを狭める度にCslのヒットレートに減少が見られる。
- D06H4 OUTERを22mmより狭めるとビーム寿命が減っている。

15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

5

٦0

٦0

200

0

16:20 16:25 16:30 16:35 16:40 16:45 16:50 16:55

シミュレーション結果

ビーム寿命

- 22mmから寿命を削っている。
 ↑測定データと一致している。
- D06H4 OUTER だけでなく他のコリメー タも同等の効果がある。

減り始め

IRロスレート

IRロスレートはコリメータ幅によらない。
 ↑測定データを再現しない。

2017/1/30

Phase3コリメータの最適化

Phase3コリメータの最適化

ラティスファイルのアップデートで新たに最適化が必要。

最適化前のロスレート

- 理想的なバンチの連続入射で、
 - HERへは1600 GHz
 LERへは1300 GHz
 で入射可能。

	全周ロン	スレート [GHz]	IR ロス	レート [MHz]
	HER	LER	HER	LER
Brems	1.09	1.30	2.95	4.93
Coulomb	107	161	1.08	403
Touschek	235	528	260	4750

- これが全てのバックグラウンド源による全周ロスの上限値。
- Touschekとビーム-ガスによるロスは800GHzまで。
- IRロスの許容値は検出器の寿命・占有率を考慮して数MHzまで。
- ただし、垂直コリメータはTransverse Mode Coupling(TMC)により、 これ以上は近づけられない。

Phase3 HER コリメータの最適化(1)

- 水平コリメータ幅26個を一つづつ0.5,0.2mm狭め変化を見る。
- この変化幅ではD01H5 OUTER、D01H2 OUTERが効果的だった。
- 2点のベータトロンチューンNの差が半整数に近い
 →一方の振幅が大きいと他方も大きい
- IRロスのピーク*N_x* = 0.247, -0.247, -0.248
- D01H5 $N_x = 0.260$
- D01H2 $N_x = 1.245$

牛木 至 修士論文発表会

HER IR loss

D01H5

HER

D01H2

LFR

Phase3 HER コリメータの最適化(2)

D01H2 OUTER

D01H5 OUTER

-	Wid	lth	To	tal [GI	Iz]]	R [MHz]		-	Wie	lth	To	tal [GH	Iz]		IR [MH	[z]
	[mm]	$[\sigma_x]$	В	С	Т	В	С	Т			[mm]	$[\sigma_x]$	В	Ċ	Т	в	Ċ	Т
	9.5	12.2	1.09	107	235	2.95	1.08	260		ī	10.0	17.4	1.09	107	235	2.95	1.08	260
	9.0	11.5	1.09	70.2	232	2.41	1.04	227			9.5	16.6	1.09	70.2	232	2.31	0.915	200
ອ	8.5	10.9	1.09	70.3	232	2.46	0.984	200	D C	<u>0</u>	9.0	15.7	1.09	70.2	232	2.20	0.890	156
Sir	8.0	10.2	1.09	70.3	232	2.45	0.950	131			8.5	14.8	1.09	70.2	232	2.11	0.877	128
0	7.5	9.6	1.09	70.3	232	2.34	0.950	98.8	<u> </u>		8.0	13.9	1.09	70.2	232	2.02	0.860	120
C	6.5	8.3	1.09	7.05	235	2.34	0.926	94.3	C		6.0	10.5	1.09	70.3	232	1.88	0.695	12.9
	6.3	8.1	1.10	7.06	243	2.34	0.926	73.7			5.5	9.6	1.09	70.3	232	1.88	0.661	0.128
	6.0	7.7	1.10	7.07	257	2.34	0.926	70.5			5.0	8.7	1.09	70.4	232	1.88	0.632	0.0153
	5.5	7.0	1.09	71.3	271	2.34	0.926	70.5		V	4.5	7.8	1.10	70.6	248	1.88	0.620	0.0153
_					_	-												
_		全	周ロス	レート	[GHz] IR [ロスレー	・ト [Mł	Iz]							1		
	Brems			1.10			1.8	8								1	7	
	Coulon	ıb		70.5			0.63	32								-		
	Tousch	ek		237			0.01	53					tip) SC	atte	ering	5	
-																		

- IRロスは改善されたが、D01H5でのロスが14.9GHz(全体の6.3%)と多い。 IPの上流16.8mと近いので、tip scatteringの2次粒子がIRに到達しうる。
- より上流のコリメータを閉める。D09H1がs = 954m、 $N_x = 14.242$ 。

Phase3 HER コリメータの最適化(3)

			D09	9H1 IN	INER	を狭め	っていっ	た際のH	IER ロス変化
	Wie	lth	To	tal [GE	Iz]		IR [MH	z]	D01H5 [GHz]
00	[mm]	$[\sigma_x]$	В	Ċ	Т	В	$\tilde{\mathbf{C}}$	Т	Т
SID	16.0	37.8	1.10	70.5	237	1.88	0.632	0.0153	14.9
읽	15.0	35.4	1.10	70.5	237	1.88	0.632	0.0153	14.9
9	11.0	26.0	1.10	70.5	237	1.84	0.632	0.0153	14.7
	8.5	20.1	1.10	70.5	237	1.84	0.632	0.0153	13.4
	6.0	14.2	1.10	70.5	240	1.84	0.632	0.0153	7.51

D01H5 OUTER を広げていった際の HER ロスの変化

1	Wie	dth	То	tal [GH	Iz]		IR [MH	[z]	D01H5 [GHz]
20	[mm]	$[\sigma_x]$	В	Ċ	Т	В	Č	Т	Т
Ξ	5.0	8.7	1.10	70.5	240	1.84	0.632	0.0153	7.51
	6.0	10.5	1.10	70.5	240	1.84	0.663	0.0153	1.89
זכ	6.5	11.3	1.10	70.5	240	1.84	0.685	0.0153	0.990
	7.0	12.2	1.10	70.5	240	1.84	0.726	0.0153	0.767
√	7.5	13.1	1.10	70.5	240	1.84	0.735	4.93	0.600

•	D09H1を狭めてD01H5でのロス
	を減らす。

・ 全周ロスが増えるところまで行う。

- D01H5を広げてD01H5でのロス を減らす。
- IRロスが増えるところまで行う。

П.		//-/	× の取	迴16月11	友でのロ	への変化	L	
最適化	全周	ロス [(GHz]	IR ロス [MHz]				
	В	\mathbf{C}	Т	В	\mathbf{C}	Т		
前	1.09	107	235	2.95	1.08	260	_	

240

HED コリノニカの具演化 前後でのロフの亦化

1.84

0.726

後

1.10

70.5

牛木 至 修士論文発表会

(0.0153)

Phase3 LER コリメータ最適化(1)

- IRロスのピーク $N_x = 0.245$ が大きい。
- D02H4が $N_x = -0.266$ と差が半整数に近い。
- 18個の水平コリメータ幅を一つづつ0.5mm狭めて変化を見る。
- この変化幅ではD02H3OUTER、D03H1 INNERも効果があった。

牛木 至

D03H1

 e^+

S

D02H4

D02H3

LER

HER

Phase3 LER コリメータ最適化(2)

• 3つのコリメータの幅を全周ロスが増えるまで狭めていった。

D03H1 INNER

Wid	lth	Tot	tal [GI	Iz	IR [MHz]			
[mm]	$[\sigma_x]$	В	$\overset{1}{\mathrm{C}}$	T	В	C	T	Sin.
18.8	62.5	1.30	161	528	4.93	403	4748	Ő
18.3	60.9	1.30	161	528	4.87	403	4516	C
17.8	59.2	1.30	160	529	4.70	403	4004	
16.8	55.9	1.30	161	532	4.46	401	3482	

D02H	3 0	UTER
------	-----	------

Width		Tot	Total [GHz]			IR [MHz]			
[mm]	$[\sigma_x]$	В	Ċ	Т	В	C	Т		
21.5	69.0	1.30	161	528	4.93	403	4748		
19.5	62.6	1.30	161	528	4.42	403	4046		
18.0	57.8	1.30	161	531	4.04	401	2931		
17.5	56.2	1.30	161	539	3.90	400	2724		

D02H4 OUTER

	Width		Tot	al [GI	Hz]	IR [MHz]			
	[mm]	$[\sigma_x]$	В	C	T	В	С	T	
	10.0	26.5	1.30	161	528	4.93	403	4748	
	9.0	23.9	1.30	161	528	4.93	402	4736	
	8.0	21.2	1.30	161	528	4.06	335	3812	
	7.0	18.6	1.30	161	531	3.12	219	2113	
1	6.0	15.9	1.34	161	728	2.68	127	117	

.12: LER コリメータの最適化前後でのロスの変化

最適化	全周ロス [GHz]			IR ロス [MHz]			
	В	С	Т	В	C	T	
前	1.30	161	528	4.93	403	4748	
後	1.34	161	728	2.68	126	179	

- IRロスのCoulombとTouschekがまだ100MHz台のため、より良い最適化が必要。
- HERもLERも一定の幅を動かして効果のあったものだけを狭めた その場所でのビームサイズによっては、その幅は不十分 全てのコリメータを全周ロスが増えるところまで狭めるべきだった。

まとめ

- SuperKEKBがKEKBの40倍のルミノシティを達成するために、2倍の電流値と1/20の ベータ関数が要求される。それに伴い、ビームバックグラウンドの増加が予想される。
- トラッキング計算を用いて、Touschek効果とビーム・ガス散乱によるビームバックグラウンドシミュレーションを行った。
- シミュレーションを行うにあたって、IRのドリフト空間の分割とBremsstrahlungのカットオフを決めた。
- SuperKEKB Phase1のセットアップでは、BEAST II検出器のバックグラウンドシミュレーションを行うためのデータセットの生成を行った。また、BEAST IIで測定されたコリメータスタディとの比較をした。
- SuperKEKB Phase3のセットアップではコリメータ幅を最適化して、IRロスの抑制に取り 組んだ。HERは目標通り行えたが、LERはさらなる最適化が必要となる。

Backup Slide

SuperKEKBの加速器パラメータ

1			L	
パラメータ	シンボル	LER (e^+)	HER (e^-)	単位
ビームエネルギー	E	4.000	7.007	${\rm GeV}$
リング周長	$L_{ m circ}$	3016	5.315	m
半交差角	ϕ	41	.5	mrad
水平エミッタンス	ε_x	3.2	4.6	nm
垂直エミッタンス	ε_y	8.64	11.5	$_{\rm pm}$
IP 水平ベータ関数	β_x^*	32	25	$\mathbf{m}\mathbf{m}$
IP 垂直ベータ関数	β_y^*	0.270	0.300	mm
IP 水平ビームサイズ	σ_x^*	10.2	7.75	$\mu{ m m}$
IP 垂直ビームサイズ	σ_y^*	59	59	nm
水平ベータトロンチューン	ν_x	44.53	45.53	
垂直ベータトロンチューン	$ u_y$	44.57	43.57	
モーメンタム圧縮	α_c	3.25	4.55	10^{-4}
エネルギー偏差	σ_{δ}	8.08	6.37	10^{-4}
ビーム電流	$I_{\rm beam}$	3.6	2.6	А
バンチ数/リング	n_b	25	00	
エネルギーロス/ターン	U_0	2.15	2.50	MeV
キャビティ電圧	V_c	9.4	15.0	MV
シンクロトロンチューン	$ u_s$	-0.0247	-0.0280	
バンチ長	σ_z	6	5	$\mathbf{m}\mathbf{m}$
ビーム-ビームパラメータ	ξ_y	0.0881	0.0807	
ルミノシティ	L	80	00	$\rm nb^{-}{}^1s^{-1}$

その他のバックグラウンド源

- Radiative Bhabha
 - 衝突点で発生した光子がビーム軸に沿って進む。磁石の鉄に衝突し大量の中性子が生成される。バックスキャッタリングされてきたものが、エンドキャップ部分のKLMのバックグラウンドとなる。中性子遮蔽壁が設置された。
 - 光子を出しエネルギーを失った電子・陽電子が磁石によって曲げられすぎ、構造物にぶつかり 電磁シャワーを起こす。最終収束磁石をHER/LERで別にした。
- 2光子過程
 - 1/r²に比例し、内径の小さくなった崩壊点検出器にとっては影響は増えるが、シミュレーション によれば安全な範囲内。
- シンクロトロン放射
 - シンクロトロン放射によって失ったエネルギーは加速空洞で補われるので、それは問題になら ない。数keVの放射光が崩壊点検出器に当たることでダメージを受ける。ビームパイプを細くし たり、溝を彫ることで、直接IPに侵入できないようにした。またベリリウムのビームパイプ内面に 金メッキを施し、吸収させる。

KEKBとSuperKEKBの最終収束磁石

- KEKBでは最終収束磁石をHERとLERで共有していた。衝突後のビームは4重極磁石の端を通すことで、偏向磁石のように使っていた。それだと、Radiative Bhabhaなどでエネルギーを失った粒子が曲げられすぎてビームパイプに当たる。
- 交差角を大きくすることで、IRの空間が大きくなり、個別に4重極磁石を持てる。

アンテチェンバー方式

2017/1/30

IRビームパイプ

- IPに向かって細くなるテーパー構造。
- 溝が掘ってある。

2017/1/30

BEAST II Phase1センサー

検出システム	大学・研究所	チャンネル数	測定量
PIN ダイオード	Wayne State U.	64	瞬時線量
Time Projection Chamber	U. Hawaii	4	高速中性子のフラックスと
			方向
ダイヤモンド結晶	INFN Trieste	4	衝突点付近の線量
He3 比例計数管	U. Victoria	4	熱中性子の頻度
CsI(Tl)、CsI、LYSO 結晶	U. Victoria, INFN Frascati	6×3	電磁エネルギーと入射バッ
			クグラウンド
BGO 結晶	National Taiwan U.	8	電子・光子の線量とルミノ
			シティ
プラスチックシンチレータ	MPI Munich	8	入射バックグラウンド

ビーム-ガス散乱の散乱断面積

- Bremsstrahlung $\frac{d\sigma_{\rm B}}{du} = \frac{16\alpha r_e^2 Z^2}{3u} \left[(1 - u + \frac{3}{4}u^2) \log \frac{183}{Z^{1/3}} + \frac{1 - u}{12} \right], \qquad u = \frac{\Delta E}{E}$
- Coulomb散乱

$$\frac{d\sigma_{\rm C}}{d\theta} = \frac{8\pi Z^2 r_e^2 \sin\theta}{\gamma^2 (\theta^2 + \theta_0^2)^2}, \qquad \theta_0 = \frac{\alpha Z^{1/3}}{\gamma}$$

Touchek効果によるロスレート

• 重心系座標におけるMoller散乱の散乱断面積 $d\sigma = \frac{8\pi r_e^2}{(v/c)^4} \left(\frac{2}{\cos^3 \chi} - \frac{1}{\cos \chi}\right) \sin \chi \, d\chi$

• エネルギー移行 $q = \frac{x'_2 - x'_1}{2} = \frac{v}{2\gamma c} = \frac{p_x}{\gamma m c}$ $\delta = \gamma q \cos \chi$

• $\Box \angle V - \bigvee_{R_T} = \frac{2}{\gamma^2 L_{\text{circ}}} \int ds \int dx_1 dy_1 dz_1 \int dx'_1 dy'_1 d\delta_1 \int dx'_2 dy'_2 d\delta_2 2v d\sigma \sin\chi d\chi \rho_1 \rho_2$ $R_T = \sum_i \frac{L_i}{L_{\text{circ}}} \frac{c N_{\text{beam}}^2}{2\pi^2 \sigma_{x',i} \sigma_{x,i} \sigma_{y,i} \sigma_z} \sum_j \sigma(q_j) q_j \exp\left[-\left(q_j / \sigma_{x'j}\right)^2\right] \frac{V_j}{n}$ $\sigma_x = \sqrt{\varepsilon_x \beta_x} + (\eta_x \sigma_\delta)^2, \sigma_y = \sqrt{\varepsilon_y \beta_y}, \sigma_{x'} = \sqrt{\frac{\varepsilon_x}{\beta_x} \left(1 + \frac{H_x}{\varepsilon_x} \sigma_\delta^2\right)^2}$ $H_x = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta'_x + \beta_x \eta'_x^2$

2017/1/30

シミュレーションのスケール

• ビーム-ガスとTouschekによるロスレートRは $R_{
m Touschek} \propto rac{I_{
m beam}^2}{\sigma_n}$ $R_{\rm Beam-gas} \propto Z^2 I_{\rm beam} P$ シミュレーションと測定データを比較するには、次の係数をシミュレーション結果に掛ける $S_{\text{Touschek}}^{R} = \frac{\sigma_{y,\text{simu}}}{\sigma_{y,\text{data}}} \frac{I_{\text{beam,data}}^{2}}{I_{\text{beam simu}}^{2}}$ $S_{\text{Beam-gas}}^{R} = \frac{Z_{\text{data}}^{2}}{Z_{\text{cimu}}^{2}} \frac{P_{\text{data}}}{P_{\text{simu}}} \frac{I_{\text{beam,data}}}{I_{\text{beam simu}}}$ ・ビーム寿命は $\tau = \frac{N_{\text{beam}}}{R} = \frac{L_{\text{circ}}I_{\text{beam}}}{ec} \frac{1}{R}$ のため $\tau_{\rm Beam-gas} = \frac{I_{\rm beam}L_{\rm circ}}{ec} \frac{1}{R_{\rm Beam-gas}} \propto \frac{1}{Z^2 P} \qquad \qquad \tau_{\rm Touschek} = \frac{I_{\rm beam}L_{\rm circ}}{ec} \frac{1}{R_{\rm Touschek}} \propto \frac{\sigma_y}{I_{\rm beam}}$ シミュレーションと測定データを比較するには、次の係数をシミュレーション結果に掛ける

$$S_{\text{Beam-gas}}^{\tau} = \frac{Z_{\text{simu}}^2}{Z_{\text{data}}^2} \frac{P_{\text{simu}}}{P_{\text{data}}} \qquad \qquad S_{\text{Touschek}}^{\tau} = \frac{\sigma_{y,\text{data}}}{\sigma_{y,\text{simu}}} \frac{I_{\text{beam,simu}}}{I_{\text{beam,data}}}$$

Bremsstarhlungのカットオフ u_{min} Phase1

Bremsstrahlungのカットオフ u_{min} Phase3

垂直面内での分布 – xy平面

LER Coulomb IRロスの散乱位置と角度

HER Coulomb IRロスの散乱位置と角度

Colomb散乱によるずれ

• <u>http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/TUOBC02.PDF</u> より、 $s = s_1$ で散乱されたビーム粒子の $s = s_2$ における垂直方向のずれは、 $y_2 = \theta_y \sqrt{\beta_{y,1}\beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1})$ で表される。

•
$$\mathbf{x}(s) = (x(s), x'(s))^T$$
に対して、 $\mathbf{x}(s) = M(s)\mathbf{x}(0)$ となる転送行列は、

$$M(s) = \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} [\cos\mu(s) + \alpha_0 \sin\mu(s)] & \sqrt{\beta_0\beta(s)} \sin\mu(s) \\ -\frac{(\alpha(s) - \alpha_0)\cos\mu(s) + (1 + \alpha_0\alpha(s))\sin\mu(s)}{\sqrt{\beta_0\beta(s)}} & \sqrt{\frac{\beta_0}{\beta(s)}} [\cos\mu(s) - \alpha(s)\sin\mu(s)] \end{pmatrix}$$

• $y_1 = (0, \theta_y)^T \& \forall \exists \& y_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \exists \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \forall \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \forall \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \forall \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& \forall \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,1}) \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,1} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \sin(\psi_{y,2} - \psi_{y,2}) \& w_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \otimes \psi_2 \otimes \psi_2 = \theta_y \sqrt{\beta_{y,2} \beta_{y,2}} \otimes \psi_2 \otimes \psi_2 = \theta_y \sqrt{\beta_{$

2017/1/30

データセットの調査 - IRロス散乱位置

IRでロスした粒子がどこで散乱されたか

- 全てが1周目でロスしている。
- HERは上流900mより近くから。
- LERは上流100mより近くから来る。

Ver. 2016.10.11 (14th campaign) BG loss distribution

2016/10/20 B2GM

H. Nakayama (KEK)

2016/10/20 B2GM H. Nakayama (KEK)

Sub-Detector BG levels

CDC wire rate two photor j¥2000 BHWide LER BHWide HEF 곳 월1800 Phase 3 ouschek LER **Jourschek HER** ₩ 1600 R881FB R88 HER Coulomb LER 1400 Coulomb HEF 1200 1000 800 600 400 200 LayerID

SVD occupancy

See more details in Background parallel session https://kds.kek.jp/indico/event/22581/session/27/?slotId=0#20161019 Layer

HER コリメータ

mask	B_tot	C_tot	T_tot	sum_tot	B_ir	C_ir	T_ir	sum_ir
d01h1_d1_00.5mm	2.79E-08	4.13E-03	-1.59E-05	4.12E-03			-9.87E+00	-9.87E+00
d01h1_d1_02.0mm	1.04E-03	2.02E-01	3.60E+00	3.80E+00	-8.06E-01	-2.26E-01	-1.21E+01	-1.31E+01
d01h1_d2_00.5mm	1.40E-08	1.26E-05	-1.65E-05	-3.96E-06		-4.14E-01		-4.14E-01
d01h1_d2_02.0mm	2.98E-08	1.00E-01	1.05E-04	1.00E-01	-5.27E-01	-2.12E-01		-7.39E-01
d01h2_d1_00.5mm	-1.49E-08	1.41E-05	-1.05E-05	3.55E-06				
d01h2_d1_02.0mm	6.52E-09	4.40E-03	9.11E-06	4.41E-03		-2.12E-01	-3.14E-02	-2.44E-01
d01h2_d2_00.5mm	2.42E-08	9.52E-04	-1.57E-05	9.36E-04	-3.95E-01	-1.45E-01	-4.21E+01	-4.26E+01
d01h2_d2_02.0mm	3.63E-08	7.10E-02	1.81E-04	7.12E-02	-5.27E-01	-2.26E-01		-7.52E-01
d01h3_d1_00.5mm		-7.38E-07	-1.97E-05	-2.04E-05				
d01h3_d1_02.0mm	-1.02E-08	-7.25E-06	-4.06E-05	-4.78E-05				
d01h3_d2_00.5mm	1.91E-08	-1.84E-05	1.81E-05	-2.19E-07	-2.14E-01	-8.29E-03		-2.22E-01
d01h3_d2_02.0mm	-5.36E-08	4.40E-03	1.35E-01	1.40E-01		-3.68E-02	-3.14E-02	-6.82E-02
d01h4_d1_00.5mm	2.79E-09	-1.90E-06	-2.82E-05	-3.01E-05				
d01h4_d1_02.0mm	1.70E-08	-9.40E-06	-6.85E-06	-1.62E-05	-2.79E-01	-1.65E-03	-1.21E+01	-1.24E+01
d01h4_d2_00.5mm		6.16E-06	-1.10E-06	5.06E-06				
d01h4_d2_02.0mm	5.12E-09	-7.20E-06	-6.20E-06	-1.34E-05		-4.94E-04		-4.94E-04
d01h5_d1_00.5mm	-6.05E-09	-1.05E-09	4.22E-06	4.22E-06	-3.84E-01	-3.32E-02		-4.17E-01
d01h5_d1_02.0mm	-1.86E-09	-4.68E-08	-8.00E-06	-8.05E-06	-5.27E-01	-5.84E-02		-5.85E-01
d01h5_d2_00.5mm	-3.73E-09	-5.24E-10	4.44E-06	4.43E-06		-1.12E-01	-7.70E+01	-7.71E+01
d01h5_d2_02.0mm	2.51E-08	-2.51E-08	-1.21E-05	-1.21E-05	-1.05E+00	-1.62E-01	-1.50E+00	-2.72E+00
d09h1_d1_00.5mm	-7.45E-09	3.03E-09	1.85E-06	1.84E-06				
d09h1_d1_02.0mm	1.86E-09	-3.81E-08	2.98E-07	2.62E-07				
d09h1_d2_00.5mm			1.19E-07	1.19E-07				
d09h1_d2_02.0mm		-2.33E-10	-1.79E-07	-1.79E-07				
d09h2_d1_00.5mm	-1.86E-09	3.57E-08	4.77E-07	5.11E-07				
d09h2_d1_02.0mm	1.68E-08	-5.37E-08	8.34E-07	7.97E-07				
d09h2_d2_00.5mm								
d09h2_d2_02.0mm								
d09h3_d1_00.5mm	9.31E-09	-2.82E-08	-6.18E-06	-6.20E-06				
d09h3_d1_02.0mm	2.89E-08	-9.24E-08	-1.23E-05	-1.24E-05				
d09h3_d2_00.5mm								
d09h3_d2_02.0mm		2.33E-10		2.33E-10				
d09h4_d1_00.5mm	1.12E-08	3.43E-08	-6.70E-06	-6.65E-06				
d09h4_d1_02.0mm	3.49E-08	-9.15E-08	-1.76E-05	-1.76E-05				
d09h4_d2_00.5mm								
d09h4_d2_02.0mm		-5.59E-09		-5.59E-09				
d12h1_d1_00.5mm	1.58E-08	-1.48E-06	-8.72E-06	-1.02E-05				
d12h1_d1_02.0mm	1.26E-07	5.54E-04	5.75E-05	6.12E-04			-3.14E-02	-3.14E-02
d12h1_d2_00.5mm								
d12h1_d2_02.0mm								
d12h2_d1_00.5mm	-1.63E-08	-2.28E-06	-1.82E-08	-2.31E-06				
d12h2_d1_02.0mm	2.89E-08	4.88E-05	1.17E-04	1.66E-04		-1.63E-02	-3.14E-02	-4.77E-02
d12h2_d2_00.5mm								
d12h2_d2_02.0mm								
d12h3_d1_00.5mm		-3.70E-08		-3.70E-08				
d12h3_d1_02.0mm	-4.66E-09	-2.79E-06	-2.46E-06	-5.25E-06				
d12h3_d2_00.5mm								
d12h3_d2_02.0mm								
d12h4_d1_00.5mm		5.84E-06	-1.86E-08	5.82E-06				
d12h4_d1_02.0mm	1.02E-08	-2.94E-06	1.14E-06	-1.79E-06				
d12h4_d2_00.5mm								
d12h4_d2_02.0mm								

LER コリメータ

mask	B_tot	C_tot	T_tot	sum_tot	B_ir	C_ir	T_ir	sum_ir
d02h1_d1_00.5mm	-1.86E-08	1.19E-06	-1.69E-05	-1.58E-05		-2.96E-01		-2.96E-01
d02h1_d2_00.5mm		-2.09E-07	-2.38E-06	-2.59E-06				
d02h2_d1_00.5mm	-3.73E-09	1.18E-04	-8.11E-06	1.10E-04		-2.15E+01		-2.15E+01
d02h2_d2_00.5mm	1.12E-02	1.71E-02	5.83E+01	5.83E+01		-2.66E+01		-2.66E+01
d02h3_d1_00.5mm		-1.91E-05	-3.43E-05	-5.34E-05		-1.85E-02		-1.85E-02
d02h3_d2_00.5mm	-1.02E-08	4.82E-07	-2.22E-05	-2.17E-05	-2.96E-01		-5.23E+01	-5.26E+01
d02h4_d1_00.5mm	3.98E-04	-3.73E-09	5.17E+00	5.17E+00		-3.84E-01	-2.49E+01	-2.53E+01
d02h4_d2_00.5mm	9.31E-09	-4.19E-09	-7.15E-06	-7.15E-06		-1.28E-01	-2.18E+01	-2.19E+01
d03h1_d1_00.5mm	-2.37E-08	2.65E-05	3.25E-02	3.25E-02	-2.85E-01	-3.67E-02	-2.29E+02	-2.29E+02
d03h1_d2_00.5mm	-5.59E-08	6.92E-05	1.61E-04	2.30E-04		-3.71E+00		-3.71E+00
d03h2_d1_00.5mm	-2.24E-08	-5.36E-06	9.54E-07	-4.43E-06				
d03h2_d2_00.5mm		1.75E-10	-3.43E-06	-3.43E-06				
d06h1_d1_00.5mm	2.42E-08	1.30E-08	2.41E-06	2.45E-06				
d06h1_d2_00.5mm		7.97E-09	-3.34E-06	-3.33E-06				
d06h3_d1_00.5mm		7.96E-08	6.79E-06	6.87E-06				
d06h3_d2_00.5mm		1.59E-08	5.72E-06	5.74E-06				
d06h4_d1_00.5mm	-5.59E-09	3.32E-08	-2.06E-06	-2.04E-06				
d06h4 d2 00.5mm		3.74E-08	4.26E-06	4.30E-06				

Phase1 HER ベータ関数

Phase1 LER ベータ関数

Phase3 HER ベータ関数

Phase3 LER ベータ関数

