Semi-leptonic Study with New Samples

Y. Okugawa¹ A. Irles² R. Yonamine¹ F. Richard² R. Pöschl²

¹Tohoku University

²Laboratoire de l'Accélérateur Linéaire

October 24, 2018

2 Large and Small Detector Sample Comparison

Table of Contents

2 Large and Small Detector Sample Comparison

3 Conclusion

Motivation

Physics

- We look at top-quark pair production via electron-positron collision in ILC at 500 GeV scenario.
- Top-quark is the heaviest elementary particle we know as far as the Standard Model (SM) suggests. It's mass $m_{top} \approx 175$ GeV is on the same level as that of massive gauge boson.
- If we could assess the the coupling between Top quark and W boson, we would possibly be able to confirm electroweak symmetry breaking, indicating the physics Beyond SM.

Channel

Channel	Decay Channel	Probability
Full Hadronic	$t\overline{t} ightarrow b\overline{b}q\overline{q}^{\prime}q\overline{q}^{\prime}$	45.7%
Semi-leptonic	$t\overline{t} ightarrow b\overline{b} \; u\overline{\ell}q\overline{q}'$	43.8%
Full leptonic	$t\overline{t} ightarrow b\overline{b}\;\overline{\ell}\ell u\overline{ u}$	10.5%

International Large Detector (ILD)

Small and Large Detectors

Comparison of Small and Large Samples

	TPC Radius (mm)	B-field (T)
Large	1808	3.5
Small	1460	4.0

Physical Observables

Forward and backward asymmetry

$$A_{fb} \equiv \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$

where θ is a polar angle of top quark with respect to the beam line.

- A_{fb} is used as a key estimator for the electroweak coupling between top-quark in this analysis, yet does not address on actual physical values in this analysis.
- Decent measurement performance on vertex charge measurement is required to distinguish top and anti-top, in order to calculate reliable A_{fb} value.
- For the simplicity in reconstruction, we only focused on polarization with *left-handed electron* case. (namely, eLpR)

Strategy

Steps for Analysis

- $1\,$ Measurement of vertex charge
- 2 Comparison of charges from hadronic and leptonic top
- 3 Calculation of forward and backward asymmetry (Afb)

Benchmark Studies

- Inspection on samples with different detector geometries (small and large)
- Distribution of polar angle for top and b quarks

Cuts

Basic selection cuts:¹

- Lepton cut: Iso.Lep. > 5 GeV
- Hadronic mass: 180 < M_{Had} < 420
- *btag*1 > 0.8 or *btag*2 > 0.3
- Thrust: *thrust* < 0.9
- Top1 mass: $120 < m_{t1} < 270$
- W1 mass: 50 < m_{W1} < 250

Lorentz Gamma cuts:

- $\gamma_t^{had} + \gamma_t^{lep} > 2.4$ • $\gamma_t^{lep} < 2.0$
- b-quark Momentum cuts:
 - $|p|_{had} > 15 \text{ GeV}$

¹Main distinct algorithm to distinguish top and anti-top.

Overviev

Methods

Methods

Methods 1-4 (Rely only on hadronic charge information)

- $1 \text{ vtx} \times \text{vtx}$
- $2 \ \text{kaon} \times \text{kaon}$
- 3 vtx \times kaon
- 4 vtx \times kaon'

Methods 5-6 (Use isolated lepton charge)

- 5 vtx imes lepton, vtx' imes lepton
- 6 kaon \times lepton, kaon' \times lepton

¹All methods that have been used should be consistent with one another. ²Methods rely on algorithm used in Dr. Sviatoslav Bilokin's thesis. [Bilokin 2017]

Table of Contents

2 Large and Small Detector Sample Comparison

Basic Selection Efficiencies

Small Detector

nEvents	85056	(100.%)
after lepton cuts	73376	(86.3%)
after btag cuts (0.8 & 0.3)	68021	(80.0%)
after thrust cut	68021	(80.0%)
after hadronic mass cut	66431	(78.1%)
after reco T & W mass cut	60885	(71.6%)

Large Detector

nEvents	85056	(100.%)
after lepton cuts	73277	(86.2%)
after btag cuts (0.8 & 0.3)	67842	(79.8%)
after thrust cut	67842	(79.8%)
after hadronic mass cut	66254	(77.9%)
after reco T & W mass cut	60880	(71.6%)

Top Polar Angle Distributions

Okurawa I	(Tohoku II)
O Rugawa j	

b-quark

Approach using b-quark

- Because W boson only couples to left-handed particles and right-handed anti-particles, we expect b-quark to follow same flight direction as top quark especially in left handed electron case.
- b-quark is a main tool to distinguish top and anti-top, which will be also the case for full-hadronic channel.

b Polar Angle Distributions

0	(T.I. I.I. III)	
Okugawa (Tohoku Ul	1

Table of Contents

2 Large and Small Detector Sample Comparison

Conclusion

Some important remarks:

- Inspection on samples with different detector geometries
- Distribution of polar angle for top and b quarks

Future prospects:

- Revision on purity of track reconstruction.
- Contribution to IDR (ILD Design Report)
- Extension to full-hadronic channel.

References

Sviatoslav Bilokin (2017)

'Hadronic showers in a highly granular silicon-tungsten calorimeter and production of bottom and top quarks at the ILC'

Ph.D thesis, Université Paris Saclay, Orsay France

Thank you

Backup

Method 7

Method 7:

Method 7 is based on availability of isolated lepton and chi2 (= $\chi^2_{top}) <$ 15, where

$$\chi^2_{top} = \left(\frac{\gamma^{had}_t - 1.435}{\sigma_{\gamma_t}}\right)^2 + \left(\frac{p^*_b - 68}{\sigma_{\gamma_{p^*_b}}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^2$$

Top Efficiency and Afb (w/o Consistency Check)

Small Detector

Afb gen	0.32973	N: 164292
Afb reco	0.325618	N: 31454
Final efficiency	38.2904%	

Large Detector

Afb gen	0.329718	N: 164292
Afb reco	0.327559	N: 31518
Final efficiency	38.3683%	

Top Polar Angle Distributions (w/o Consistency Check)

Okugawa (Tohoku U)

LCWS 2018