Development of Readout ASIC for FPCCD Vertex Detector

01 October 2009

Kennosuke.Itagaki

Tohoku University

FPCCD Vertex Detector

- Large amounts of e⁺•e⁻ pair background is generated at beam collision.
- For low pixel occupancy, we develop Vertex Detector adopt fine pixel CCD sensor.

120mm

- FPCCD Vertex Detector
 - Fine Pixel CCD
 - \triangleright Pixel size : 5 μ m \times 5 μ m
 - > Epitaxial layer thickness: 15μm
 - $-20,000 \times 128 \text{ pix/ch}$
 - # of channels $\sim 6,000$ ch
 - Double layers : CCDs are attached on two sides of the ladders.
 - Readout ASIC for FPCCD is developed.

Requirements to readout ASIC

- Power consumption < 6 mW/ch
 - > Setting in a cryostat
 - ➤ Total power consumption < 100W
- Readout rate > 10 Mpix/sec
 - > Read out in the inter-train time
 - \geq 20,000 × 128 pix / 200 ms
- Noise level < 30 electrons
 - ➤ Signal becomes small for particles penetrating with large angle.

Readout ASIC was designed to satisfy these requirement.

Solution of Requirements

- Power consumption < 6 mW/ch
 - ➤ ADC is the main power consumption source.
 - For suppressing power consumption at ADC, charge sharing ADC is used.
 - Signal is converted by comparing the reference voltage with a capacitor.
 - \Rightarrow Power consumption of ADC < 10μW/ch

- Readout rate > 10 Mpix/sec
 - ➤ It is difficult to operate charge sharing ADC with high-speed
 - Two 5MHzADC are used alternatively.
 - → 10Mpix/sec
- Estimated noise level < 30e

Test sample of readout ASIC

- Design of prototype ASIC
 - Amplifier
 - Low pass filter (LPF)
 - Correlated double sampling (CDS)
 - > sample backward and forward of pixel data
 - > output voltage difference at sampling points
 - Charge sharing ADC × 2
 - Serial output

CCD output

CDS output

• Test sample

0.35μm TSMC process

Chip size : $2.85 \text{ mm} \times 2.85 \text{ mm}$

of channels: 8

Package: QFP-80 pin

sampling

The performance of a test sample was checked

Test bench

- Data acquisition and circuit control are done by a VME module.
 - GNV-250 module
 - The control logic was implemented into FPGA.
 - The test job and parameter setting are controlled by PC.
 - ADC output is stored on FIFO embedded in FPGA, and sent to PC.

Pedestal distribution

- Pedestal distribution was checked
 - − Conversion rate ~1.5 Mpix/sec

- Some ADC counts are not output.
- The reason was investigated.
- → Next slide
- Noise level

RMS = 1.1

Equivalent noise charge at sensor input

- \Rightarrow ~45e (Requirement:30e)
- ADC count → Temperature dependency was checked.
 - → After the next slide

Problem of ADC design

• ADC output was simulated by MATLAB.

• Simulation result of enlarged capacity of ADC capacitor is

consistent with measurement.

Charge sharing ADC

VTP

VQP

CTP

CSP

Capacitor array

VTN

VQN

VQN

- The floating capacitance at the switching circuit in the ADC unbalanced the ADC capacitor ratio.
- The switching circuit was designed again.

New circuit

• ADC output was checked by simulation with new switching circuit.

New circuit has no problem, and is adopted to the next sample.

Temperature dependency of Pedestal

• The pedestal distribution was measured for various temperature.

- The main fluctuation of RMS comes from effect of the missing ADC counts.
- The temperature dependency is smaller than the RMS fluctuation.
- The temperature dependency will be studied with the next sample.

Fine Pixel CCD sample

- Test sample to establish technology
 - Pixel size: $12\mu m \times 12\mu m$
 - Epitaxial layer thickness: 15μm
 - # of readout channels: 4ch
 - $\gt{5}12 \times 128 \text{ pix/ch}$

- FPCCD and readout ASIC were connected.
 - The control logic for CCD was also implemented on FPGA.

FPCCD readout

- Speed transmission of VME module to PC is slow.
- ADC output is temporarily stored in FIFO.
- By limit of FPGA capacity, all the data cannot be stored.
- ADC data were converted to 1bit.
 - Threshold: 30

FPCCD reaction for light

Black

: do not react

• Response of FPCCD to the light was checked.

- 1channel($512 \times 128 \text{ pixel}$)
- Response of FPCCD to the light emission can be observed.
- The image will be read as the next step.

Summary

- We developed FPCCD vertex detector
 - > Requirement for readout ASIC
 - ◆ Power consumption < 6mW/ch</p>
 - ◆ Readout rate > 10Mpix/sec
 - ◆ Noise level < 30e
- Pedestal check for readout ASIC sample
 - > Noise level ~ 45e
 - > Some ADC count are not output.
 - ⇒ switching circuit was designed again.
 - > Temperature dependency of ASIC cannot be observed because of missing ADC.
 - examined next sample
- FPCCD sample readout
 - > By limit of FPGA capacity, all pixel cannot read out.
 - ⇒ ADC data were converted 1bit.
 - > Readout ASIC can read out FPCCD data
 - → Next step is readout image
 - > Readout board can read out all pixel is developed and tested.

Buck up

Power consumption of LVDS

- Differential voltage: 350mV
- Resistor : 100Ω
- Power consumption : $(350 \text{mV})^2 / 100\Omega = 1.2 \text{mW}$
- Below 6mV