

Development of Readout ASIC for Pair-monitor

Yutaro Sato Tohoku Univ. 1st Oct. 2009

Pair-monitor

Pair-monitor is a silicon pixel detector to measure the beam profile at IP.

- The distribution of the pair B.G. is used.
 - The same charges with respect to the oncoming beam are scattered with large angle.
 - The scattered particles have information on beam shape.
- The location will be in front of the BeamCal.

Contents

We have developed

- performance study of pair-monitor .
- development of the readout ASIC for the pair-monitor.

Contents

- The development of the pair-monitor with SOI technology was started.
 - ➤ The first prototype which is only readout ASIC was produced.
 - > The operation test was performed.

Development of Pair-monitor with SOI technology

SOI (Silicon On Insulator) pixel detector

- The sensor and electronics are integrated in the SOI substrate.
 - > Monolithic device, high speed, low power, thin device, low material

Pair-monitor

• Pixel size : 400 x 400 μm²

• Radius: 10 cm

• Total number of pixel : ~200,000

→ Monolithic device allows the elimination of bump-bonding process.

We started to develop the pair-monitor with SOI technology. As the first step, only the readout electronics was produced.

Development of the readout ASIC

Design concept of readout ASIC

- Pair-monitor measures the hit distribution of the pair B.G..
- Measurement is done for 16 parts in one train for the time-dependent measurement.
 - 16 hit counts are stored at each part.
 - Count rate : $< 2.5 \text{ MHz} / (400 \mu \text{m x} 400 \mu \text{m})$
 - Information of the energy deposit is not necessary.
- Data is read out during inter-train gaps. (~ 200 msec)

The prototype readout ASIC was designed to satisfy these concepts.

Layout of prototype ASIC

Design of readout ASIC

Design of readout ASIC

- 9 (3x3) readout pixels
 - Amplifier
 - comparator
 - 8-bit counter
 - > to count the number of hits
 - 16 count-registers

Prototype of SOI chip

The prototype of the SOI chip was developed.

Prototype chip

- FD-SOI CMOS 0.2 µm process
- Chip size : $2.5 \times 2.5 \text{mm}^2$
- # of pixel : 9 (= 3x3)
- Only the readout ASIC was fabricated.
- Package: QFP80

Packaged ASIC

The production of the readout ASIC was done in Aug. 2009.

Test system

The operation test was performed.

Test system

- GNV-250 module was used for the operation and readout.
 - KEK-VME 6U module
- The test-sequence by GPIO is controlled by a PC.

Response of shift-register

The response of the shift-register was checked.

• The select signal rose at the third clock signal.

Response of pre-amplifier

The output of the pre-amplifier was checked.

Response of shaping-amplifier

The output of the shaping-amplifier was checked.

Response of counter block

The response of the 8-bit counter was checked.

- Gray code is used.
 - > two successive values differ in only one bit.

Gray-code
000
001
011
Q1 <mark>Ŏ</mark>
1 10

Readout of hit counts

Readout of hit counts was checked.

• The hit count was stored at 4 MHz hit rate/ (400μm x 400μm) and read out from the count registers.

The correct hit counts were read out from count-register.

Noise characteristic (1)

Threshold scan was performed.

• Fit to error function (S-curve)

• Threshold: $6.886 \pm 0.009 \,[\text{mV}]$

• Noise: 0.7152 ± 0.0128 [mV]

The gain was estimated to convert the noise into equivalent noise electrons.

• Gain: 16.94 [mV/fC]

Noise : ~260 electrons

Noise characteristic (2)

The noise level was checked as a function of the detector capacitance.

• Each cell have different detector capacitance.

 \rightarrow The noise level is 250 ~ 700 electrons.

Noise is much smaller than typical signal level (~20,000 [e])

Stability of noise

The stability of the noise was checked.

• The noise was evaluated in adjusting the time constant of amplifier circuits.

The noise level is stable (does not changed greatly).

Summary

- Pair-monitor is a silicon pixel detector to measure the beam profile at IP.
- The development of the pair-monitor with SOI technology was started.
 - ➤ The first prototype which is only readout ASIC was produce.
 - > The operation test was performed.
 - All the ASIC components work correctly.
 - The noise level is much smaller than typical signal level.

Plan

The irradiation test will be performed.

Thank you for listening!