Performance study of

 Pair Monitor

 Pair Monitor}

Kazutoshi Ito
Tohoku university
Collaboration
$23^{\text {rd }}$ Sep. 2008

High precision design

Introduction

- Pair monitor measures the beam shape at IP, using pair background.
- The same charges with respect to the oncoming beam are scattered with large angle.
- The potential produced by the oncoming beam is a function of beam shape.
- The scattered particles carry the beam information.
- Pair monitor detects the scattered particles.

- Activity of Tohoku group.
- Development of the readout ASIC.

- Simulation study.

Current status of simulation study is shown.

Simulation setup

- CM energy : 500 GeV
- Beam size : $\left(\sigma_{x}{ }^{0}, \sigma_{y}{ }^{0}, \sigma_{z}{ }^{0}\right)$

$$
=(639 \mathrm{~nm}, 5.7 \mathrm{~nm}, 300 \mu \mathrm{~m})
$$

- Tools : CAIN (e+e- generator) Jupiter (Tracking emulator)
- Magnetic field : 3T with anti-DID.
- Scattered e ${ }^{+}$distribution was studied.

Pair monitor

Matrix method for beam size reconstruction

- The beam size is reconstructed by the Taylor expansion.

The measurement variables are studied.

Variable 1: Rmax (sensitive to the horizontal beam size)

$X-Y$ distribution
$\stackrel{\bar{U}}{\bar{U}}$

R distribution seems to depend on the horizontal beam size $\left(\sigma_{\mathrm{x}}\right)$.

The maximum R was investigated.

Variable 1:Rmax

- $R_{\text {max }}$ - Radius to contain 99.8% of all hits.

$R_{\text {max }}$ depends on the horizontal beam size $\left(\sigma_{x}\right)$, dose not depend on the vertical size.

Variable 2: Ratio (sensitive to σ_{x} and σ_{y})

- To derive the beam information, projection to ϕ-axis is checked. ϕ distribution ($0.5 \times \mathrm{R}_{\max }<\mathrm{R}<0.8 \times \mathrm{R}_{\max }$)
 $\frac{\bar{c}}{\stackrel{\rightharpoonup}{U}}$

$$
\begin{aligned}
& \text { Projectio, } \\
& \text { to } \phi \text {-axis }
\end{aligned}
$$

Variable 2: Ratio

- The ratio defined NL/Nall were obtained various beam size. R- ϕ distribution for the nominal \quad Ratio $=N_{L} / N_{\text {ALL }}$ (100bunches)

The ratio depends on the horizontal and vertical beam size ($\left.\sigma_{x^{\prime}} \sigma_{y}\right)$.

Variable 3: Total number of hits (sensitive to σ_{x} and σ_{x})

- The number of hits also have information of beam shape.

Luminosity(L) $L \propto 1 / \sigma_{x} \sigma_{y}$

Number of hits $\left(\mathrm{N}_{\text {tot }}\right)$ $1 / N_{\text {tot }} \propto 1 / L \propto \sigma_{x} \sigma_{y}$

1/Ntot depends on both horizontal and vertical beam size.

Reconstruction of beam size

- Rmax, Ratio, $1 / N_{\text {tot }}$ were set as the variable term (m, A and B).

- Procedure of the beam size reconstruction.
a) $x_{0}=A^{-1} m$
b) $x_{1}=\left[A+x_{0}{ }^{\top} B\right]^{-1} m$
c) $x_{n}=\left[A+x_{n-1}{ }^{\top} B\right]^{-1} m$

Matrix component

Matrix components are determined by fitting.

Results of the horizontal beam size reconstruction

measurement of the horizontal beam size (σ_{x})

Reconstructed with only ${ }_{4}$ the first order matrx.

Reconstructed with the second order matrix.

Horizontal beam size: $\sigma_{x}^{\text {true }}[\mathrm{nm}]$

- Horizontal beam size can be measured with 2\%.

Results of the vertical beam size reconstruction

measurement of the vertical beam size (σ_{y})

Reconstructed with only the first order matrx. $\frac{20}{0}$

Vertical beam size: $\sigma_{y}{ }^{\text {true }}[\mathrm{nm}]$

Reconstructed with the second order matrx.

Vertical beam size: $\sigma_{y}^{\text {true }}[\mathrm{nm}]$

Summary

- Pair monitor measures the beam shape at IP.
- Using pair backgrounds.
- The beam size (σ_{x}, σ_{y}) were reconstructed using the matrix of the Taylor expansion (second order).
- There are three measurement variables.
- $R_{\text {max }}$ - sensitive to σx.
- Ratio - sensitive to σx and σy.
- $1 / N_{\text {tot }}$ - sensitive to σx and σy.
- Horizontal beam size σ_{x} - resolution : 2\% ($\sim 14 \mathrm{~nm}$).
- Vertical beam size σ_{y} - resolution : 3\% ($\sim 0.2 \mathrm{~nm}$).

$$
\begin{aligned}
& m=A x+x^{\top} B x \\
& x=\left[A+x^{\top} B\right]^{-1} m
\end{aligned}
$$

