<u>Performance study of</u> <u>Pair Monitor</u>

Kazutoshi Ito Tohoku university 23rd Sep. 2008

Introduction

- Pair monitor measures the beam shape at IP, using pair background.
 - The same charges with respect to the oncoming beam are scattered with large angle.
 - The potential produced by the oncoming beam is a function of beam shape.
 - The scattered particles carry the beam information.
 - Pair monitor detects the scattered particles.

Simulation setup

- CM energy : 500GeV
- Beam size : $(\sigma_x^0, \sigma_y^0, \sigma_z^0)$
 - = (639nm, 5.7nm, 300μm)
- Tools : CAIN (e+e- generator) Jupiter (Tracking emulator)
- Magnetic field : 3T with anti-DID.
- Scattered e⁺ distribution was studied.

Matrix method for beam size reconstruction

The beam size is reconstructed by the Taylor expansion.

The measurement variables are studied.

Variable 1 : Rmax (sensitive to the horizontal beam size)

<u>Variable 1 : Rmax</u>

Rmax – Radius to contain 99.8% of all hits.

<u>Variable 2 : Ratio (sensitive to σ and σ)</u>

Variable 2 : Ratio

The ratio defined NL/NALL were obtained various beam size.

The ratio depends on the horizontal and vertical beam size(σ_x , σ_y).

Variable 3 : Total number of hits (sensitive to σ_x and σ_y)

The number of hits also have information of beam shape.

1/Ntot depends on both horizontal and vertical beam size.

Reconstruction of beam size

Rmax, Ratio, 1/Ntot were set as the variable term (m, A and B).

- Procedure of the beam size reconstruction.
 a)x₀ = A⁻¹m
 b)x₁ = [A+x₀^TB]⁻¹m
 - $c)x_n = [A+x_{n-1}^TB]^{-1}m$

<u>Matrix component</u>

Results of the horizontal beam size reconstruction

measurement of the horizontal beam size (σ_x)

Horizontal beam size can be measured with 2%.

Results of the vertical beam size reconstruction

measurement of the vertical beam size (σ_y)

<u>Summary</u>

- Pair monitor measures the beam shape at IP.
 - Using pair backgrounds.
- The beam size (σ_x, σ_y) were reconstructed using the matrix of the Taylor expansion (second order).
 - There are three measurement variables.
 - ~ R_{max} sensitive to σx .
 - \checkmark Ratio sensitive to σx and $\sigma y.$
 - ~ $1/N_{tot}$ sensitive to σx and σy .
 - Horizontal beam size σ_x resolution : 2% (~14nm).
 - Vertical beam size σ_y resolution : 3% (~0.2nm).

$$m = A x + x^{T} B x$$

$$x = [A + x^{T} B]^{-1} m$$