

東北大学 佐々木 励

素粒子物理学における標準模型は 多くの実験により立証されてきた

しかし、要のヒッグスは未検証 ヒッグスの質量補正 → 新しい物理 : O(1)TeVに存在

一方、
 電弱相互作用の精密測定 → 新しい物理:10TeV以下にない

その解決のために 「リトルヒッグス」 のシナリオが提唱されている

<模型パラメータの典型的な値>

) 測定器の候補: GLD, LDC, SiD, 4th ILD (*GLDでシミュレーション) (目標値) ・エネルギー分解能: △E/E=30%/√E (GeV) ・運動量分解能: △pt/pt²=5×10⁻⁵ (GeV/c)⁻¹

√S=500GeVでの物理:A_HとZ_Hの質量

<hのエネルギー分布>

√s=500GeVでの物理:A_HとZ_Hの質量

√S=1TeVでの物理:A_HとW_H±の質量

<W[±]のエネルギー分布>

模型のパラメータ f

< 質量の測定精度を表す等高線>

< 質量の測定精度から決まるfの値>

f = 576.0 ±25.0 GeV ($\sqrt{s} = 500 \text{GeV}$)

f = 580.0 ±0.69 GeV ($\sqrt{s} = 1 \text{TeV}$)

<

暗黒物質 (A_H) の残存密度 Ωh^2

* Ω h²とfには依存関係がある <Ωh²の確率密度の分布> 暗黒物質の残存密度 確率密度 PLANCK $=\frac{1.07\times10^9 x_f \text{GeV}^{-1}}{\sqrt{g_*}m_{Pl}}$ **WMAP** ILC(1TeV) ILC(500GeV) 暗黒物質の対消滅断面積 $\langle \sigma v \rangle = \sigma v_{WW} + \sigma v_{ZZ} + \sigma v_{hh}$ $\boxed{\mathbf{v}}_{WW} = \frac{1}{96\pi m_{A_1}^2} \frac{(g^2 v^2 c)^2}{(4m_{A_1}^2 - m_h^2)^2 + m_h^2 \Gamma_h^2} \left(4\frac{m_{A_1}^4}{m_W^4} - 4\frac{m_{A_1}^2}{m_W^2} + 3\right) \sqrt{1 - \frac{m_W^2}{m_A^2}}$ $\sigma v|_{ZZ} = \frac{1}{192\pi m_{A,I}^2} \frac{\{(g^2 + g'^2)v^2c\}^2}{(4m_{A,I}^2 - m_h^2)^2 + m_h^2\Gamma_h^2} \begin{pmatrix} 4m_{A,I}^2 - 4m_{A,I}^2 + 3 \\ m_Z^2 \end{pmatrix} \sqrt{1 - \frac{m_Z^2}{m_{A,I}^2}}$ 0.11 0.12 暗黒物質の残存密度 Qh² 0.11 0.09 0.1 $\sigma \mathbf{v}_{|hh} = \frac{c^2}{48\pi m_{A,l}^2} \left| 1 + \frac{3m_h^2}{4m_{A,l}^2 - m_h^2 + im_h\Gamma_h} \right|^2 \sqrt{1 - \frac{m_h^2}{m_{A,l}^2}} = \frac{c^2}{48\pi m_{A,l}^2} \left| 1 + \frac{m_h^2}{4m_{A,l}^2} - \frac{m_h^2}{m_h^2} + \frac{m_h^2}{4m_{A,l}^2} \right|^2 \sqrt{1 - \frac{m_h^2}{m_{A,l}^2}} = \frac{c^2}{48\pi m_{A,l}^2} \left| 1 + \frac{m_h^2}{4m_{A,l}^2} - \frac{m_h^2}{4m_{A,l}^2} + \frac{m_h^2}{4m_{A,l}^2} + \frac{m_h^2}{4m_{A,l}^2} + \frac{m_h^2}{4m_{A,l}^2} \right|^2 \sqrt{1 - \frac{m_h^2}{m_{A,l}^2}} = \frac{c^2}{48\pi m_{A,l}^2} \left| 1 + \frac{m_{A,l}^2}{4m_{A,l}^2} - \frac{m_h^2}{4m_{A,l}^2} + \frac{m_h$ m₄⊣∝f (*富山大 松本重貴 氏による) 暗黒物質(A_μ)の対消滅ダイアグラム AHZ <Ωh²の決定精度> $O(10\%) \left(\sqrt{s} = 500 \text{GeV}\right)$ W(Z) (•h **0(1%)** $(\sqrt{s} = 1 \text{TeV})$ 11

リトルヒッグス模型は

リトル・ヒエラルキー問題と暗黒物質の問題を解決する新しい物理

→ ILC実験におけるシミュレーションで検証

<√s=500GeVでの物理:e+e→A_HZ_H>

・シグナル事象の統計の有意性:3.7σ
 ・質量の測定精度:16.2%(A_H),4.3%(Z_H)

<√s=1TeVでの物理:e+e-→W_H+W_H->

・質量の測定精度: 0.8%(A_H), 0.2%(W_H[±])

<考察>

・模型パラメータの決定精度 f: $4.3\%(\sqrt{s} = 500 \text{GeV}), 0.1\%(\sqrt{s} = 1 \text{TeV})$ ・暗黒物質の残存密度の決定精度: $O(10\%)(\sqrt{s} = 500 \text{GeV}), O(1\%)(\sqrt{s} = 1 \text{TeV})$

<研究結果>

LOI(Letter Of Intent)に記載

解析の流れ: e⁺e⁻→A_HZ_H

- (a) シグナル事象の決定 : 終状態「2ジェット(bb) + 見えない粒子×2」
- (b) バックグラウンド事象の選定 :終状態「2ジェット(bb)を含む」
- (c) 物理事象の再構成
- (d) 物理事象の選択

(b)

(e) バックグラウンド事象の除去

シグナル事象 $A_H Z_H \rightarrow A_H A_H h$ $\rightarrow A_H A_H b \overline{b} 1.05$ (fb)

グラ	ウンド事業	象
\rightarrow	$\gamma b \overline{b}$	$1,\!200(\mathrm{fb})$
$\rightarrow V$	V^+W^-	56 496(fb)
\rightarrow	$\nu\nu b\bar{b}$	$44.3(\mathrm{fb})$
\rightarrow	$\nu \nu b \overline{b}$	$34.0(\mathrm{fb})$
\rightarrow	$\nu \nu b \overline{b}$	$25.5(\mathrm{fb})$
\rightarrow	$\nu\nu b\bar{b}$	5.57(fb)
	ッグラ \rightarrow $\rightarrow V$ \rightarrow \rightarrow \rightarrow	$ \phi \phi \phi \phi \phi \phi b b \rightarrow \gamma b \overline{b} \rightarrow \psi \nu b \overline{b} \rightarrow \nu \nu b \overline{b}$

*標準模型において 2ジェットとなる全ての過程を考慮

解析の流れ: e⁺e⁻→A_µZ_µ

- (c)物理事象の再構成
- (d) 物理事象の選択
- (e) バックグラウンド事象の除去

シグナル事象 $A_H Z_H \rightarrow A_H A_H h$ $\rightarrow A_H A_H bb 1.05 (fb)$

バック	ヮグラヮ	ウンド事業	 象
γZ	\rightarrow	$\gamma \overline{b}\overline{b}$	$1,\!200(\mathrm{fb})$
tt	$\rightarrow V$	V^+W^-	<u></u> あ 496(fb)
u u Z	\rightarrow	$\nu \nu b \overline{b}$	44.3(fb)
u u h	\rightarrow	$\nu \nu b \overline{b}$	$34.0(\mathrm{fb})$
ZZ	\rightarrow	$\nu \nu b \overline{b}$	$25.5(\mathrm{fb})$
Zh	\rightarrow	$\nu\nu bb$	5.57(fb)

- (a) シグナル事象の決定 :終状態「2ジェット(bb) + 見えない粒子×2」 (b) バックグラウンド事象の選定 : 終状態「2ジェット(bb)を含む」
 - : 2ジェットとして再構成 →hとして再構成

*θ₀の値を変えれば、nジェットとして再構成可能

解析の流れ: e⁺e⁻→A_µZ_µ

- (a) シグナル事象の決定 (b) バックグラウンド事象の選定 : 終状態「2ジェット(bb)を含む」 (c) 物理事象の再構成
- (d) 物理事象の選択 (e) バックグラウンド事象の除去

シグナル事象 $A_H Z_H \rightarrow A_H A_H h$ $\rightarrow A_H A_H bb \ 1.05 \text{(fb)}$

バック	ヮグラヮ	ウンド事業	 象
γZ	\rightarrow	$\gamma b \overline{b}$	1,200(fb)
tt	$\rightarrow V$	V^+W^-l	$b\bar{b}$ 496(fb)
u u Z	\rightarrow	$ u u b \overline{b}$	$44.3(\mathrm{fb})$
u u h	\rightarrow	$ u u b \overline{b}$	$34.0(\mathrm{fb})$
ZZ	\rightarrow	$ u u b \overline{b}$	$25.5(\mathrm{fb})$
Zh	\rightarrow	$ u u b \overline{b}$	$5.57(\mathrm{fb})$

- : 終状態「2ジェット(bb) + 見えない粒子×2」

 - : 2ジェットとして再構成→hとして再構成
 - :hの質量 & 横運動量欠損P_t^{miss} & b-タグ

*b-タグの選択では bクォークが80%残る

解析の流れ: e⁺e⁻→W_µ⁺W_µ⁻

(a) シグナル事象の決定

- :終状態「4ジェット + 見えない粒子 × 2」
- (b) バックグラウンド事象の選定
- (c) 物理事象の再構成
- (d) 物理事象の選択

シグナル事象

(e) バックグラウンド事象の除去

 $\rightarrow A_H A_H q \bar{q} q \bar{q}$

120(fb)

 $W_H^+ W_H^- \rightarrow A_H A_H W + W$

<W[±]の崩壊>

ハドロン崩壊: $W \rightarrow q\bar{q}$ (BR = 67.6%) レプトン崩壊: $W \rightarrow l\nu$ (BR = 32.4%) W*とW*の2つについて 4 ジェット 2 ジェット + 1 レプトン : $q\bar{q}l\nu$ 2 レプトン $L^+ \nu l^- \bar{\nu}$

*反応断面積

解析の流れ: e⁺e⁻→W_H⁺W_H⁻

(a) シグナル事象の決定 : 終状態 [4ジェット + 見えない粒子×2]

(b) バックグラウンド事象の選定 :終状態「4ジェットを含む」

- (c) 物理事象の再構成
- (d) 物理事象の選択
- (e) バックグラウンド事象の除去

b)	バックグラ	ウンド事象		
/	W^+W^-	$\rightarrow q \bar{q} q \bar{q}$	1307(fb)	
	$e^+e^-W^+W^-$	$ \rightarrow e^+e^- q\bar{q}q\bar{q}$	490(fb)	
	$e\nu_eWZ$	$\rightarrow e \nu_e q \bar{q} q \bar{q}$	$24.5(\mathrm{fb})$	
	$Z_H Z_H$	$\rightarrow A_H A_H q \bar{q} q$	q 18.8(fb) <mark>→</mark>	―― *リトルヒッグス模型における過程
	$ u \bar{\nu} W^+ W^-$	$ ightarrow u ar{ u} q ar{q} q ar{q}$	7.23(fb)	
	ZW^+W^-	$ ightarrow u ar{ u} \overline{q} \overline{q} q \overline{q}$	$5.61(\mathrm{fb})$	*標準模型において
				4ジェットとなる全ての過程を考慮

解析の流れ: e⁺e⁻→W_H⁺W_H⁻

- (a) シグナル事象の決定 バックグラウンド事象の選定 (c)物理事象の再構成
- :終状態「4ジェット + 見えない粒子 × 2」
- :終状態「4ジェットを含む」
- :4ジェットとして再構成→2個のW±として再構成

J3

解析の流れ: e⁺e⁻→W_H+W_H⁻

(a) シグナル事象の決定 (b) バックグラウンド事象の選定 :終状態「4ジェットを含む」 物理事象の再構成 (C)

(d) 物理事象の選択 (e) バックグラウンド事象の除去

シグナル事象 $W_H^+ W_H^- \rightarrow A_H A_H W^+ W^ \rightarrow A_H A_H q \bar{q} q \bar{q} = 120 \text{(fb)}$

゙゙バックグラ	ウンド事象	
W^+W^-	$ ightarrow q \bar{q} q \bar{q}$	1307(fb)
$e^+e^-W^+W^-$	$- \rightarrow e^+ e^- q \bar{q} q$	$q\bar{q}$ 490(fb)
$e\nu_e WZ$	$\rightarrow e \nu_e q \bar{q} q \bar{q}$	$24.5(\mathrm{fb})$
$Z_H Z_H$	$\rightarrow A_H A_H q$	$\bar{q}q\bar{q}$ 18.8(fb)
$ u \bar{\nu} W^+ W^-$	$\rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$7.23(\mathrm{fb})$
ZW^+W^-	$ ightarrow u ar{ u} q ar{q} q ar{q}$	5.61(fb)

- : 終状態「4ジェット + 見えない粒子 × 2」

 - : 4ジェットとして再構成→2個のW±として再構成
 - : W[±]のエネルギー & χ_w² & 横運動量欠損P_t^{miss}

*W[±]のエネルギーの選択は $0(GeV) < E_W < 500(GeV)$