The simulation study of the Higgs self-coupling at the ILC

Hirai Shun Department of Physics, Tohoku University 10 Mar. 2009

Outline

- 1. Introduction
- 2. Analysis
- 3. Result

1. Introduction

 \rightarrow To check if the measurement of the *Higgs selfcoupling* is possible at the International Linear Collider

<u>Conclusion : I could not check the possibility</u>

1.2 International Linear Collider

The International Linear Collider (ILC) is future electron-positron linear collider

- Length : 30 km
- Center of mass energy : 200~500 GeV
- Time to start working : ?

1.3 How can ILC measure the self-coupling?

Х Х H H H

The cross section of ZHH depends on the strength of the coupling

What we have to do is to **count the number of ZHH signal**.
= measure the ZHH cross section σ_{ZHH}

 \rightarrow *ILC* is supposed to have a potential to do this.

1.3 How can ILC measure the self-coupling?

However, it is not so easy.

Distinguishing the signal from background is the most important point in this experiment

2. Analysis


```
2. Analysis
2.1 Signal
   2.1.2 Signal & Background
            Signal
              e^+e^- \rightarrow ZHH \rightarrow vv HH (38.8 ab)
            Background
              e^+e^- \rightarrow ZZ \rightarrow bbbb (9,050 ab)
              e^+e^- \to tt (583,000 ab)
              e^+e^- \rightarrow ZH (62,100 ab)
              e^+e^- \rightarrow tbtb
                                        (1,200 \text{ ab})
```

2.2 Simulation flowchart

- 1. Generating events MadGraph & Physsim
- 2. Detector Simulation fast simulation


```
GLD detector
```

3. Analysis

Parameter

- Higgs mass : 120 GeV
- Integrated Luminosity : 2000 fb⁻¹
- Model : Standard Model

2.3 Background rejection

The number of the events after jet pairing are described as below

2.3 Background rejection

2.3.1. Flavor tagging method

b quark has relatively long lifetime than other flavor of quarks(u,d,c,s). So it can be distinguished from others with 80% efficiency. e^{-1}

If a event is a vvHH event, reconstructed two di-jet masses (recM_{H1,2}) are around Higgs mass (120 GeV).

250

 e^+

2.3 Background rejection 2.3.3. Missing mass

Two neutrinos can not be detected, so the missing mass ($^{rec}M_{miss}$) is around Z mass (91.2 GeV).

3. Result

RESULT

After selection cuts so far, we got a result

Selection cut	Signal	Background
No cut	77.6	1,300,133
Number of b-tagging = 4	20.1	37,213
$90 \text{GeV} < {}^{\text{rec}}M_{\text{H1,2}} < 126 \text{GeV}$	15.3	5,263
$70 GeV < rec M_{miss} < 180 GeV$	14.3	1,067
$30 \text{GeV} < \text{Missing P}_t$	13.7	659
Number of leptons $= 0$	13.7	567

3. Result

RESULT

Signal significance is 0.57 (=13.7 $\div \sqrt{13.7 + 567}$)

Stronger background rejection is necessary.

Analysis with $ZHH \rightarrow qqHH$ (6-jet mode) will be studied

Thank you for listening

Back up

2.4 Jet pairing

We want to know which of the jet pair is coming from Higgs

4 jets are forced into 2 jet pairs by energy and momentum.

$$\chi^2 = \frac{({}^{rec}M_{H_1} - M_H)^2}{\sigma_{H_1}^2} + \frac{({}^{rec}M_{H_2} - M_H)^2}{\sigma_{H_2}^2}$$

2.4 Jet pairing

Example

When each jet has the four momentum listed below,

$$p^{1} = (E_{1}, P_{1}) = (114, 35.9, 105, -24.1)$$

$$p^{2} = (E_{2}, P_{2}) = (59.6, 33.6, -18.4, -42.4)$$

$$p^{3} = (E_{3}, P_{3}) = (49.2, 32.0, -28.9, 1.80)$$

$$p^{4} = (E_{4}, P_{4}) = (153, -81.2, -125, 25.9)$$

Three candidates of Higgs are calculated as follows

a
$$rec M_{H_1a} = \sqrt{(E_1 + E_2)^2 - (P_1 + P_2)^2} = 116 \text{ GeV}$$

 $rec M_{H_2a} = \sqrt{(E_3 + E_4)^2 - (P_3 + P_4)^2} = 118 \text{ GeV}$

b
$$rec M_{H_1b} = \sqrt{(E_1 + E_3)^2 - (\mathbf{P}_1 + \mathbf{P}_3)^2} = 126 \text{ GeV}$$

 $rec M_{H_2b} = \sqrt{(E_2 + E_4)^2 - (\mathbf{P}_2 + \mathbf{P}_4)^2} = 101 \text{ GeV}$

c
$$rec M_{H_1c} = \sqrt{(E_1 + E_4)^2 - (\mathbf{P}_1 + \mathbf{P}_4)^2} = 263 \text{ GeV}$$

 $rec M_{H_2c} = \sqrt{(E_2 + E_3)^2 - (\mathbf{P}_2 + \mathbf{P}_3)^2} = 81.7 \text{ GeV}$