ILC実験における ヒッグス・ポータル模型での ヒッグス事象に関する測定精度の評価

ILCとは

研究の動機

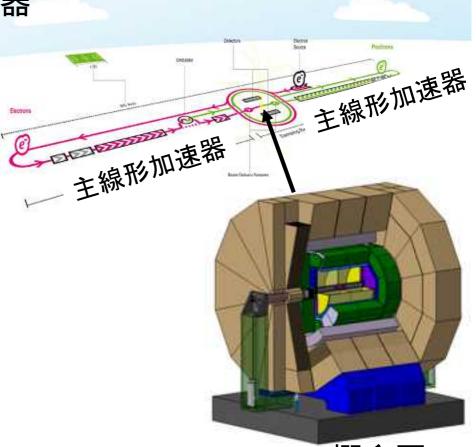
ヒッグス・ポータル模型

解析

結果

東北大理本田喬大

岡田宣親 兼村晋哉 田窪洋介 鍋島偉宏 藤井恵介 松本重貴 山本均


<u>国際リニアコライダー(ILC)計画</u>

- <加速器>
- 電子・陽電子衝突型線形加速器
- 全長 約30km
- ルミノシティ 500fb⁻¹

(4年間)

• 重心系エネルギー 500GeV

- <測定器>
- 測定器案 ILD, SiD,4th

ILD概念図

本研究の動機

- 新しい物理が10TeVに存在する場合
 - 新粒子は重くなる。
 - →ILCでは直接観測することができない
- ダークマターが新物理を解明する手掛かりとなる!
 - ダークマターによる物理現象の変化
 - ヒッグスの崩壊幅のずれ

<本研究の目的>

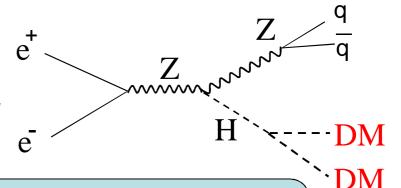
ダークマターの検出も困難な模型でILCでのダークマターの 検出感度を検証する

- ヒッグス・ポータル模型

ヒッグス・ポータル模型

- ヒッグスポータル模型でのダークマター
 - 1:強い相互作用をしない
 - 2:電弱相互作用をしない
 - 3:ヒッグスとのみ相互作用する
 - 4:3タイプが仮定される
 - スカラー、フェルミオン、ベクトル

スカラー

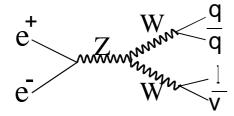

$$\mathcal{L}_{S} = \mathcal{L}_{SM} + \frac{1}{2} (\partial \phi)^{2} - \frac{M_{S}^{2}}{2} \phi^{2} - \frac{c_{S}}{2} |H|^{2} \phi^{2} - \frac{d_{S}}{4!} \phi^{4},$$
フェルミオン
 $\mathcal{L}_{F} = \mathcal{L}_{SM} + \frac{1}{2} \bar{\chi} (i \partial - M_{F}) \chi - \frac{c_{F}}{2\Lambda} |H|^{2} \bar{\chi} \chi - \frac{d_{F}}{2\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi B_{\mu\nu},$
ベクトル
 $\mathcal{L}_{V} = \mathcal{L}_{SM} - \frac{1}{4} V^{\mu\nu} V_{\mu\nu} + \frac{M_{V}^{2}}{2} V_{\mu} V^{\mu} + \frac{c_{V}}{2} |H|^{2} V_{\mu} V^{\mu} - \frac{d_{V}}{4!} (V_{\mu} V^{\mu})^{2},$
(*富山大 松本重貴氏による)

ダークマターはヒッグスとしか結合しない!

解析の対象

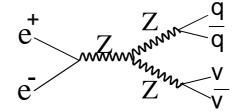
<シグナル事象(スカラータイプ)>

ee → ZH*→qqDMDM
 断面積を変えながら測定精度の評価を行った



2ジェットを再構成した時の質量欠損の閾値は →ダークマター質量の2倍の情報

<背景事象>


• ee→WW:9024fb

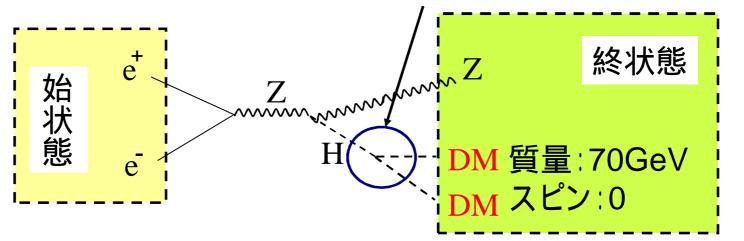
- WW→qq
$$Iv$$

ee→ZZ : 515fb

$$-$$
 ZZ \rightarrow qqνν

本研究の手順

- 1:イベントジェネレーターの作成:Physsim
- 2: 測定器シミュレーション: ILD Quick-sim
- 3:物理解析
 - 全ての事象を2ジェットとして再構成
 - 事象の選択
 - Likelihood解析サンプルの選択
 - Likelihood解析

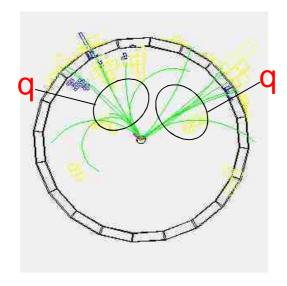

<u>イベントジェネレーターの作成</u>

Physsimにシグナルイベントを加えた

<基本粒子の生成: Physsim >

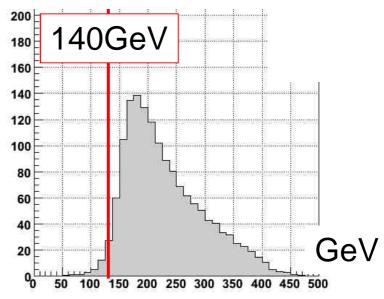
ヘリシティ振幅の計算: HELAS

- 外線(始状態と終状態)の量子状態を指定
 - -4元運動量・質量・スピン
- 内線と頂点で、始状態と終状態をつなぐ
 - 相互作用にヒッグス・ダークマター結合を追加



生成した粒子の情報を検出器シミュレーションで確認したっ

<u>検出器シミュレーション</u>


シグナル事象を検出器シミュレーションの情報で再構成した

検出器でのシグナルの様子

- ·Zが崩壊した2ジェットが見える
- ・ダークマターは見えない

<シグナルの質量欠損分布>

·140GeV(ダークマター質量の2倍) を境に分布

解析条件

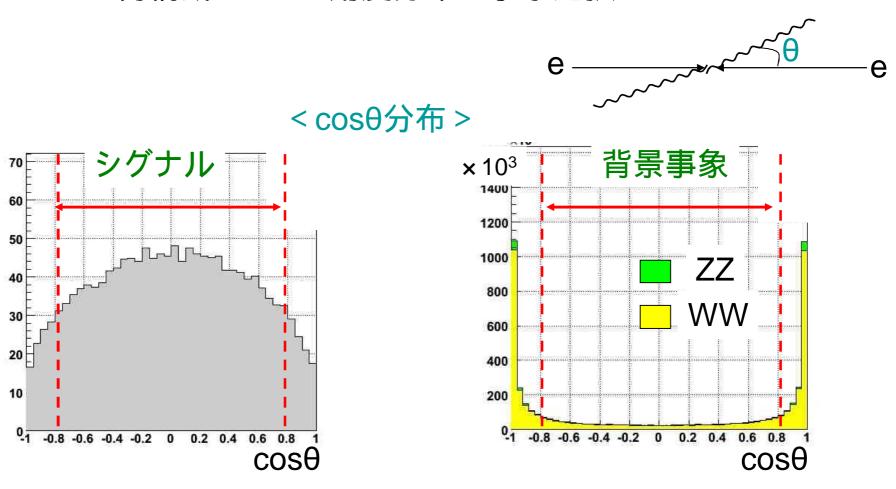
• ダークマター

- タイプ:スカラー

- 質量:70 GeV

• ヒッグス粒子

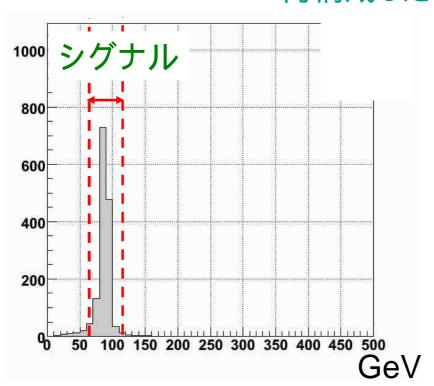
- 質量: 120 GeV

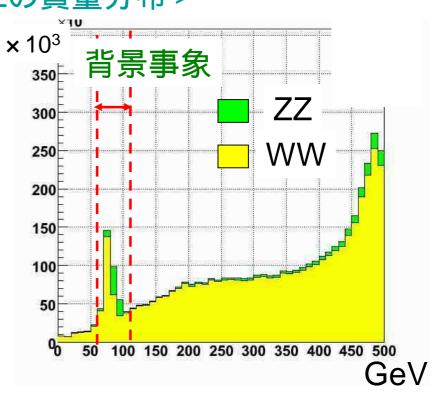

• 重心エネルギー

- 500 GeV

	ルミノシティ	反応断面積	生成した
			イベント数
シグナル	500fb ^{- 1}	3fb	30000
ZZ	500fb ^{- 1}	515fb	480000
WW	500fb ^{- 1}	9024fb	1950000

事象選択: Zの角度

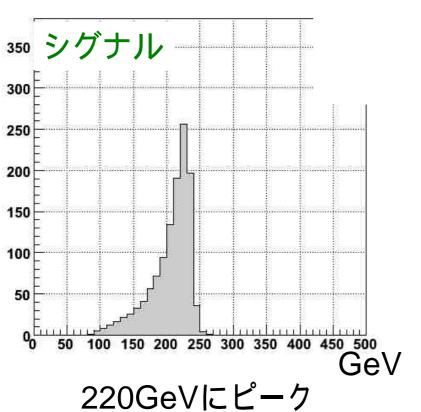

再構成したZの角度分布で事象選択した

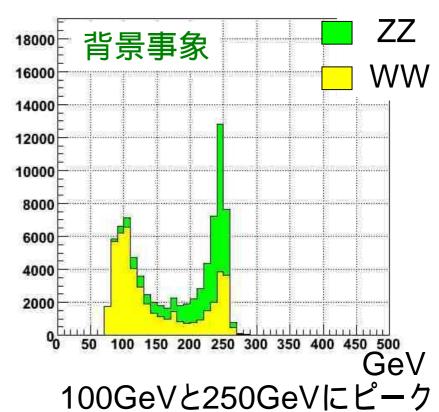

事象選択:Z質量

再構成したZの質量を用いて事象選択した

<再構成したZの質量分布>

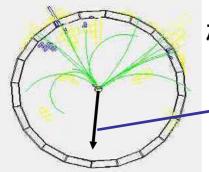
90GeVにピーク



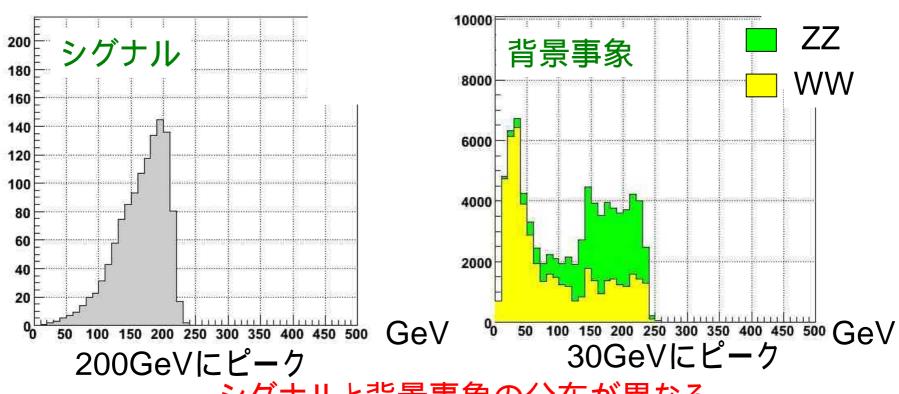

100GeV以降に大き〈分布

Likelihood用変数の選択:Zエネルギー

再構成したZのエネルギー分布を比較した


<再構成したZのエネルギー分布>

シグナルと背景事象の分布が異なる →Likelihood変数に採用

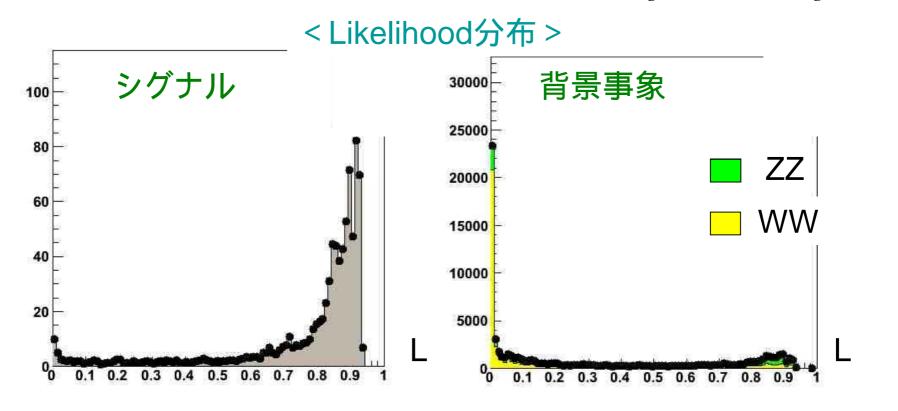

<u>Likelihood用変数の選択: 横運動量欠損</u>

横運動量欠損の分布を比較した

横運動量欠損

< 横運動量欠損の分布 >

シグナルと背景事象の分布が異なる


→Likelihood変数に採用

Likelihood解析

Likelihoodの分布をシグナルと背景事象で比較

- Likelihoodに用いた変数
 - 再構成されたZのエネルギー
 - 横運動量欠損

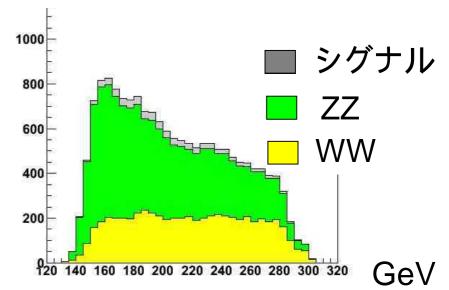
$$L = \frac{L_{signal}}{L_{signal} + L_{backgraund}}$$

シグナルと背景事象がきれいに分離できている

シグナルの有意性

 N_{signal}

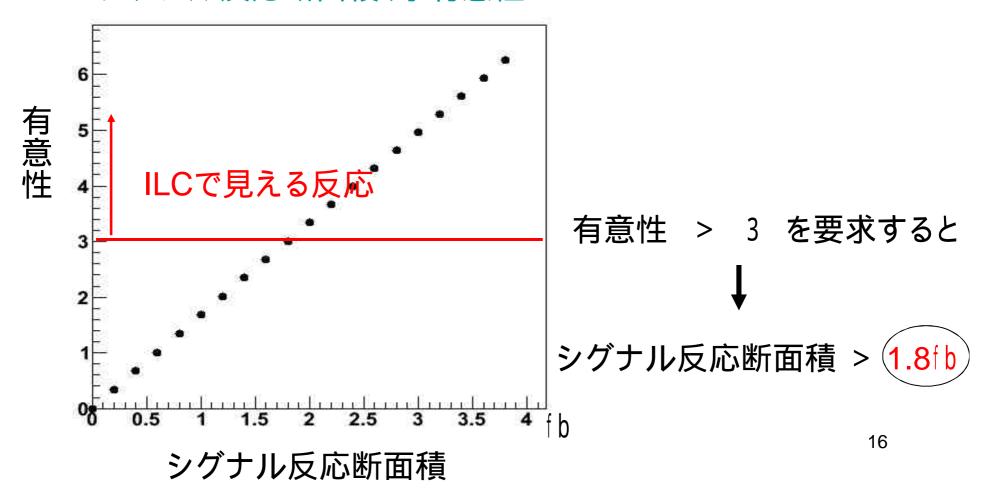
検出感度の評価として有意性を用いた


$$\sqrt{N_{signal} + N_{bg}}$$

<L 対 有意性>

	ZH*→Z DMDM	ZZ	WW
カットなし	1065	235436	4117740
事象選択	853	29920	44581
Likelihood	682	11365	6580
カット効率	64%	4.8%	0.16%

<カット後の質量欠損分布>

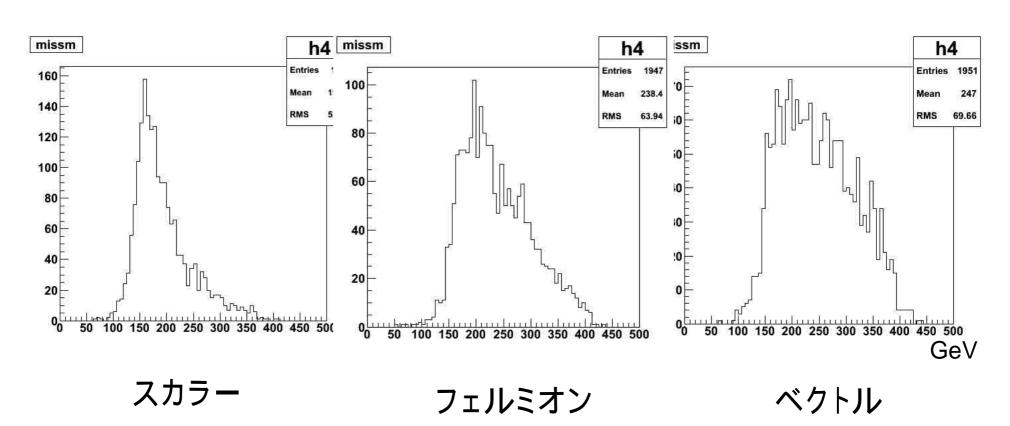

Likelihood が0.7以上のところを選択

有意性:5.0

ILCでのヒッグス・ダークマター結合の 観測に対する感度

ILCで見えるシグナル反応断面積を求めた

<シグナル反応断面積対有意性>


まとめ

- ダークマターを発見することは新物理解明の手掛かりと なる。
- 本研究ではヒッグス・ポータル模型のスカラーダークマターについて解析を行った。
- 本解析ではヒッグス事象の測定精度をクイック・シミュレーションで評価した。
- Likelihoodを用いた解析では、有意性が3以上となる最小のシグナル反応断面積は1.8fbとなった。

プラン

フェルミオン、ベクトルタイプのダークマターについて 解析を進める。

タイプ別の質量欠損分布

