

国際リニアコライダーにおけるヒッグス 粒子の崩壊分岐比測定の研究

素粒子実験 高エネルギー実験グループ 吉田幸平

イントロダクション ILC実験&ILD測定器 解析 事象再構成 背景事象除去 ヒッグス粒子崩壊分岐比導出

はじめに

標準模型

- 素粒子物理学において最も成功している理論
- 唯一ヒッグス粒子が未発見
- 素粒子の質量獲得のメカニズムは未検証

<u>ヒッグス機構</u>

- 標準理論における質量獲得のメカニズム
- ヒッグス粒子との結合が質量に比例
- BR(H \rightarrow cc)/BR(H \rightarrow bb)=mc²/mb²

<u>ヒッグス粒子崩壊分岐比測定</u>

ILCではH→ccを測定することも可能
 →本研究では崩壊分岐比の測定精度を見積もる

3

<u>加速器</u>

- 電子•陽電子衝突型線形加速器
- 重心系エネルギー: 第一期運転では最大500GeV(後に1TeV)
- 積分ルミノシティ: 500fb⁻¹(4年間)

<u>測定器</u>

- 複数ジェット事象の解析が必要
- 要求性能
 - ジェットエネルギー分解能: σ_{Ej}/E_j<3.8%(E_{CM}~90GeV)
 - W→qq,Z→qq事象の区別
 - 運動量分解能: $\Delta pt/pt^2 = 2 \times 10^{-5} (GeV/c)^{-1}$
 - 高密度なジェット中の荷電トラックを識別
 - 崩壊点分解能: $\sigma_{r\phi}=5 \oplus 10/p\beta sin^{3/2}\theta(\mu m)$
 - ・フレーバー・タグ(後述)
 - いずれも今までにない高性能
- 測定器案:ILD,SiD測定器

ILD測定器

<u>ILD測定器</u>

- 2007年、GLD(日本)とLDC(ヨーロッパ)が統合され誕生
- PFA、飛跡検出性能、フレーバー・タグに関して最適化済み
 PFA、フレーバー・タグは次ページ

複数ジェット解析に欠かせない技術

PFA(Particle Flow Algorithm)

- ジェット中の粒子を個別に再構成
 - 荷電粒子:飛跡+CAL内クラスター
 - 光子:ECAL内クラスター
 - 中性ハドロン: HCAL内クラスター
- 要求されるエネルギー分解能を達成

<u>フレーバー・タグ</u>

- ジェットのクォークタイプを同定
- IPから崩壊点までの距離等を用いる
- ニューラルネットで最適化(LCFIVertex)
 出力:b-らしさ,c-らしさ,bc-らしさ

ヒッグス粒子崩壊分岐比測定シミュレーション

8

<u>条件</u>

- ヒッグス粒子の質量:120GeV
- 重心系エネルギー:250GeV
- ルミノシティ: 250fb⁻¹
- ビーム偏極:e⁻(-80%),e⁺(+30%)

<u>ヒッグス粒子崩壊分岐比</u>

bb	65.7%	
WW	15.0%	
ττ	8.0%	
gg	5.5%	
сс	3.6%	*Mн=120GeV

シミュレーション

<u>手順</u>

・電子・陽電子衝突後の反応と反応断面積の計算

2.測定器シミュレーション

・測定器内での粒子の運動の計算

• 検出器の信号から起こった事象を構築

<u>ソフトウェア(ILCSoft)</u>

- 事象生成:Whizard
- 測定器シミュレーション: Mokka
- 再構成:Marlin

<u>ヒッグス粒子生成過程</u>

- \pm (Ξ Higgsstrahlung(e⁺e⁻ \rightarrow ZH)
- Zの崩壊過程で3種類に分類

<u>背景事象</u>

- ・ SMの4f 背景事象を全て考慮した。
- 背景事象の反応断面積は非常に大きい

*赤は信号事象

ニュートリノ過程			レプトン過程			ハドロン過程			
	断面積 (fb ⁻¹)		eeH	11.1		qq	ΙΗ	210	
ννΗ	77.4		μμΗ	10.4		vv	qq	600	
vvqq	600		eeqq	1260		qq	qq	16200	
qqqq	16200	ļ	uµqq	168		$\nu\ell$	qq	16500	
vlqq	16500		ττqq	167		ll	qq	1590	
llqq	1590	١	Veeqq	5840		VV	ell	4450	
ννℓℓ	4450	V	′µµqq	5310		ll	ll	3050	
lll	3050	1	νττqq	5300		q	q	141000	1
*ECM=250GeV, $(e^{-},e^{+})=(-80\%,+30\%)$						g	g	34000	

事象再構成

<u>ニュートリノ過程</u>

・ 全ての事象を強制的に2ジェットとして再構成

- Durham アルゴリズム

・ パレプトン過程(レプトン同定)

<u>手順</u>

- 1. 最もエネルギーの高い粒子を選択
- 2. その粒子との不変質量がZの質量に近い粒子を選択
- 3. 運動量20GeV以上を要求
- 4. カロリメータの情報でカット
 - ・ <u>電子同定</u>: 0.8<ETotal/P<1.2 かつ EECAL/ETotal>0.9
 - ミューオン同定: ETotal/P<0.25 (*ETotal=EECAL+EHCAL)
- 5. 2つのレプトン候補の電荷が互いに逆を要求

<u>性能</u>			電子	同定	ミューオン同定		
	事象 同定前		同定後	効率	同定後	効率	
	eeH	2777	1932	69.6%	1	0.02%	
	μμΗ	2601	0	0%	2275	87.5%	
	ττΗ	2592	14	0.53%	14	0.56%	

· に レプトン過程(e+e-→ℓ+ℓ-H)

16

<u>レプトン過程</u>

• 強制的に2ジェット+2レプトンとして再構成

… *に* ハドロン過程(e+e→qqH)

<u>ハドロン過程</u>

- 4ジェットとして強制的に再構成
- ヒッグス候補の2ジェットとZ候補の2ジェットに分割
- e⁺e⁻→ZHサンプルからハドロン過程選択

- 15GeV以上レプトンなし、Evis>170GeV

背景事象除去

ニュートリノ過程での背景事象除去

Zボソン選択:

- 80<質量欠損<140GeV
- ヒッグス粒子選択:
- 20<2ジェット縦運動量<70GeV, 12ジェット横運動量I<60GeV
- 100<2ジェット不変質量<130GeV
- レプトンモード除去:
- 荷電トラック数>10

v_ττqq除去:

- 最大運動量<30GeV
- 最小2ジェットY値<0.02,

WW,ZZ除去:

0.2<最大2ジェットY値<0.8

Y値とジェット

<u>Y値</u>

- 2粒子間の距離
- ・ ジェット再構成に用いる

ジェット再構成

- 基準となるYo値を用いて行う
- $Y < Y_0 \rightarrow 同じジェットとみなす$

<u>ジェット数とYo値の関係</u>

レプトン過程での背景事象除去

Zボソン選択:

- 70<e+e-質量<110GeV(電子)
- 80<µ⁺µ⁻質量<100GeV (ミューオン)
- t-チャンネル除去:
- lcosθl<0.8 (電子,ミューオン)
- ヒッグス選択:

- 100<2j質量<140GeV かつ 110<e+e-反跳質量<140GeV (電子)
- 100<2j質量<140GeV かつ 115<µ+µ-反跳質量<140GeV (ミューオン)

ハドロン過程での背景事象除去

レプトンモード除去:

荷電トラック数>4

qq<mark>除去</mark>:

- 最大4ジェットY値>0.067, スラスト<0.98
- 最大光子エネルギー<20GeV
- t-チャンネル除去:
- lcosθスラストl<0.98

qqqq<mark>除去</mark>:

- 105°<ヒッグスジェット角度<165°,70°<Zジェット角度<160°
 ヒッグス粒子選択:
- 110<ヒッグスジェット質量<140GeV

Zボソン選択:

• 80<Zジェット質量<110GeV

背景事象除去による選択効率

<u>ニュートリノ過程</u>

- $e^+e^- \rightarrow vvcc: 43.22\%, e^+e^- \rightarrow vvbb: 44.48\%$
- ・背景事象:多くても2%(vvqq:2.23%)
 レプトン過程
- $e^+e^- \rightarrow eecc: 48.62\%, e^+e^- \rightarrow eebb: 43.58\%$
- 背景事象:1%未満
- $e^+e^- \rightarrow \mu\mu cc: 59.97\%, e^+e^- \rightarrow \mu\mu bb: 54.46\%$
- 背景事象:3%未満

<u>ハドロン過程</u>

- $e^+e^- \rightarrow qqcc: 52.86\%, e^+e^- \rightarrow qqbb: 56.02\%$
- 背景事象:3%未満(qqqq:24.3%を除く)

崩壊分岐比導出

<u>BR(H→cc)/BR(H→bb)の導出</u>

• 以下の式により求める

$$\frac{BR(H \to cc)}{BR(H \to bb)} = \frac{r_{cc} / \mathcal{E}_{cc}}{r_{bb} / \mathcal{E}_{bb}}$$

Ecc, Ebb:背景事象除去による信号事象の選択効率

	ニュートリノ	電子	ミューオン	ハドロン
Ecc	0.4322	0.4862	0.5997	0.5286
Ebb	0.4448	0.4358	0.5446	0.5602

rcc,rbb:背景事象除去後のe⁺e⁻→Zcc(Zbb) /e⁺e⁻→ZH
 →rcc,rbbはテンプレートフィット(次ページで説明)により求める

<u>テンプレートフィット</u>

- モンテカルロで高統計のサンプルを作成
- サンプルをそれぞれスケールしてデータに合うようにフィット

<u>ヒッグスジェット対のクォークタイプ同定</u>

- 各ジェットはフレーバー・タグによりb,c,bc-らしさがある
- ヒッグス粒子のジェット対全体のb,c,bc-らしさを計算する
 X = $\frac{X_1 \cdot X_2}{X_1 \cdot X_2 + (1 X_1)(1 X_2)}$ Xi:i番目のジェットのb,c,bc-らしさ

ilC テンプレートサンプル

<u>テンプレートサンプル</u>

- 3次元ヒストグラム(ヒッグス粒子のb,c,bc-らしさ)
- サンプル:1. H→cc
 - 2. H→bb
 - 3. H→その他
 - 4. SM背景事象
- スケール因子: rcc, rbb, roth, rbkg

フィット結果

試行実験

- テンプレートサンプル和の各ビンをポアソン分布でふってデータ作成
- テンプレートフィット

→1000回の試行実験で得られたrcc,rbb分布をガウス分布でフィット

崩壞分岐比導出

得られたrcc,rbbからBR(H→cc)/BR(H→bb)を求める

	$BR(H\rightarrow cc)/BR(H\rightarrow bb)$	精度
ニュートリノ	0.0539 ± 0.0066	12.26%
電子	0.0527 ± 0.0170	32.19%
ミューオン	0.0526 ± 0.0163	30.91%
ハドロン	0.0581 ± 0.0068	11.71%
結果	0.0555 ± 0.0044	7.92%

• ニュートリノ過程とハドロン過程はレプトン過程より精度が良い

-------ilc

まとめ

- 質量獲得のメカニズム解明のためにヒッグス機構の検証は重要
- 検証にはヒッグス粒子の崩壊分岐比の測定が不可欠
- ILCからヒッグス粒子の精密測定が可能になる
- シミュレーションによりILD測定器におけるヒッグス粒子の崩壊分岐
 比の測定を行った
- ・ 重心系エネルギー: 250GeV、ルミノシティ: 250fb⁻¹では約8%の精度 でBR(H→cc)/BR(H→bb)の測定が可能

	$BR(H\rightarrow cc)/BR(H\rightarrow bb)$	精度
ニュートリノ	0.0539 ± 0.0066	12.26%
電子	0.0527 ± 0.0170	32.19%
ミューオン	0.0526 ± 0.0163	30.91%
ハドロン	0.0581 ± 0.0068	11.71%
結果	0.0555 ± 0.0044	7.92%

boson-fusion

ニュートリノ過程

<u>質量欠損</u>

- 信号事象はZがニュートリノペアに崩壊
- →Mz(91.2GeV)付近にピークを持つ
- 80<質量欠損<140GeVを選択

 $\rightarrow \ell \ell \ell \ell, \ell \ell qq, qqqqが除去された$

<u>縦2ジェット運動量</u>

・ ヒッグス粒子のスピン0→等方的に分布(ややビーム軸に垂直に多)

- ・ 実験室系での4元運動量保存則からIPHI~66GeV
 →66GeVにピーク、左になだらかな尾を持つ分布
- 20<縦2ジェット運動量<70GeVを選択

<u>横2ジェット運動量</u>

- ・ ヒッグス粒子のスピン0→等方的に分布(ややビーム軸に垂直に多)
- ・ 実験室系での4元運動量保存則からIPHI~66GeV
 →0GeVに多く分布、±66GeVまで広がった分布
- -60<横2ジェット運動量<60GeVを選択

荷電トラック数カット

- <u>荷電トラック数</u>
- WW→vvℓℓの除去
- 荷電トラック数=2,4のピークはτを含む事象
- 荷電トラック数>10を選択

最大運動量カット

40

<u>最大運動量</u>

- WW→v_ττqq事象の除去
- τは再構成が難しく崩壊後の粒子が再構成される
- →τが崩壊した高い運動量を持つ粒子が再構成される
- 最大運動量<30GeVを選択

<u>最小2ジェットY値</u>

- WW→v_ττqq事象の除去
- τは再構成が難しく3ジェットの事象のように見える
- →最小2ジェットY値が大きくなる
- 最小2ジェットY値<0.02を選択

<u>最大2ジェットY値</u>

- WW,ZZ→vvqq事象除去
- M_H>M_W,M_Zより<sub>β_H<β_W,β_Z → ジェットの幅が小さい
 </sub>
- →最大2ジェットY値が小さくなる
- 0.2<最大2ジェットY値<0.8を選択

信号事象領域選択

- <u>信号事象領域</u>
- ヒッグス粒子選択
- WW,ZZ→vvqq事象除去
- 100<2ジェット不変質量<130GeVを選択

ニュートリノ過程でのイベント数

	カットなし	質量欠損	縦運動量	横運動量	荷電トラック 数	最大運動量	最小2 ジ ェッ トY値	最大2ジェッ トY値	信号事象領域	選択効率
ΖН→ννсс	707	643	574	561	533	466	333	318	306	43.22%
ZH→vvbb	13062	11662	10408	10136	9852	9063	6717	6434	5810	44.48%
ΖН→ννН	19360	15637	13900	13501	12768	11674	7711	7384	6672	34.46%
veeqq	1460797	80931	67135	61437	25966	5088	961	851	448	0.03%
vµµqq	1327332	92360	75143	61715	52355	10540	2747	2288	888	0.07%
νττqq	1326061	386690	268190	200443	176370	123045	29135	24979	10131	0.76%
vvqq	149979	124843	85774	49745	43229	35942	26713	21653	3345	2.23%
other	6322758	491711	337822	266326	2677	2001	370	335	226	0.00%

レプトン過程

CALカット(レプトン同定)

主に電子とミューオンを区別

- 数GeVレプトンではE~P
- 電子: ECALでほとんどのエネルギーを落とす(E~P, EECAL~ETotal)
- ・ ミューオン:CALでほとんどエネルギーを落とさない(E<P)
- <u>電子同定</u>: 0.8<ETotal/P<1.2 かつ EECAL/ETotal>0.9
- ミューオン同定: ETotal/P<0.25 (*ETotal=EECAL+EHCAL)

bremsstrahlung γ

bremsstrahlung γ

- 電子(陽電子)は制動放射により光子を放出する → 要補正
- 光子同定条件
 - 電子の方向から2度以内の中性粒子
 - 電子が曲がる方向の中性粒子

Z質量カット

48

<u>Z質量</u>

- レプトンペアから質量を計算
- ・ 信号事象はZボソンの質量と等しい
- 70<レプトンペア不変質量<110GeV(電子)
- 80<レプトンペア不変質量<100GeV(ミューオン)

Z角度カット

<u>Z角度</u>

レプトンペアとビーム軸との角度

- ヒッグス粒子のスピン0→信号事象はフラットに分布
- 背景事象は主にt-チャンネル $\rightarrow \cos\theta = \pm 1$ にピークを持つ
- lcos0l<0.8を選択

信号事象領域選択

- <u>信号事象領域</u>
- $ZZ \rightarrow \ell \ell qq$ **除去**
- 100<Mjj<140GeV かつ 110<Mrecoil<140GeV(電子)
- 100<M_{jj}<140GeV かつ 115<M_{recoil}<140GeV(ミューオン)
- M_{jj}:2ジェット不変質量、Mrecoil:2レプトン反跳質量

2ジェット質量と2レプトン反跳質量の2次元ヒストグラム(電子チャンネル)

レプトン過程でのイベント数

電子	カットなし	電子同定	Z質量	Z角度	信号事象領域	選択効率
ZH→eecc	100	70	67	55	48	48.62%
ZH→eebb	1902	1322	1269	1044	829	43.58%
ZH→eeH	2777	1930	1854	1526	1085	39.07%
eeqq	314700	23719	18946	10418	1115	0.35%
veeqq	1460797	6248	3564	2499	26	0.00%
ττqq	41694	70	15	11	0	0.00%
νττqq	1326061	733	318	231	0	0.00%

ミューオン	カットなし	ミューオン同定	Z質量	Z角度	信号事象領域	選択効率
ΖН→μμсс	92	80	75	62	55	59.97%
ZH→µµbb	1770	1549	1436	1180	964	54.46%
ZH→µµH	2601	2273	2113	1735	1260	48.46%
μμqq	41929	18239	16109	9933	953	2.27%
νµµqq	1327332	1818	663	436	7	0.00%
ττqq	41694	74	3	2	0	0.00%
νττqq	1326061	194	27	17	0	0.00%

ハドロン過程

ハドロンジェット再構成

<u>ハドロンジェット分割</u>

- ヒッグス候補の2ジェットとZ候補の2ジェットに分割する
- $d = (M_{ij}-M_H)^2 + (M_{kl}-M_Z)^2$

kinematic fit

- 以下の条件を満たすようにkinematic fitする
 - $-\Sigma_i P_i=0$
 - $-\Sigma E=250 \text{GeV}$
 - $M_{ij}-M_{kl}=M_{H}-M_{Z}$

ハドロン過程選択

<u>ハドロン過程選択</u>

- e⁺e⁻→ZHからZ→qq事象を選択する
- ZH→vvH除去:Evis>170GeV以上を選択

荷電トラック数カット

- レプトンモード除去
- 荷電トラック数>4を選択

<u>最大4ジェットY値</u>

- ・ 3ジェットと4ジェット再構成のY値の閾値
- qqは信号事象(qqqq)よりも3ジェットのY値が小さい
 -LogYでは大きいところに分布
- -Log(最大4ジェットY値)<2.7を選択

スラストカット

<u>スラスト</u>

- qq事象除去
- ・ ジェットが逆方向に出る
- →ジェット方向にnを取るとTが1に近くなる
- スラスト<0.98を選択

 $\cos\theta$ スラストカット

 $\underline{\cos\theta}$

- スラスト方向とビーム軸との角度
- t-チャンネル除去
- t-チャンネルは前方方向に出やすい → スラストも前方方向
- -0.98<cosθスラスト<0.98を選択

に ヒッグスジェット角度カット

ヒッグスジェット角度(θ_H)

- ヒッグス粒子のジェット対間の角度
- M_H>Mw,Mzよりβ_H<βw,βz → qqqq事象はジェットの角度が小さい
- 105°<θн<165°を選択

に Zボソンジェット角度カット

<u>Zボソンジェット角度(θz)</u>

- ヒッグス粒子のジェット対間の角度
- WW→qqqq事象除去
- $Mw < Mz \\ \beta w > \beta z \rightarrow qqqq$ 事象はジェットの角度が小さい
- 70°<θz<160°を選択

<u>ヒッグス不変質量</u>

- ヒッグス粒子選択
- 110<ヒッグスジェット不変質量<140GeVを選択

<u>Zボソン不変質量</u>

- Zボソン選択
- 80<Zボソンジェット不変質量<110GeVを選択

<u>最大光子エネルギー</u>

- qq除去
- ISR光子があるため光子のエネルギーが高い
- 最大光子エネルギー<20GeVを選択

ハドロン過程でのイベント数

	qqcc	qqbb	qqH	qqqq	qq	vvqq	その他
カットなし	2914	53480	79841	4048390	35353300	149979	13781329
ハドロン	1693	29075	39966	3477480	10196600	43	6854819
荷電トラック	1238	22204	29163	2077300	1238430	5	7324
Y值	1218	21869	28781	2009000	622395	3	4519
スラスト	1217	21858	28768	2008530	571481	3	4491
cosθ	1157	20831	27415	1766300	525482	2	3907
θн	1080	19393	25414	1468630	436393	2	3177
θz	1028	18490	24223	1405720	367672	2	2759
Мн	982	17666	23059	984853	222844	1	1404
Mz	982	17665	23056	983532	221634	1	1399
光子E	895	16288	21246	844920	191039	1	1035
選択効率	52.86%	56.02%	53.16%	24.3%	1.87%	2.33%	0.02%

テンプレートフィット

<u>テンプレートフィット</u>

- 3次元テンプレート(b,c,bc-らしさ)
- フィットパラメータ:rcc, *r*bb, *r*oth, *r*bkg
 - rbkg は背景事象テンプレートの正規化因子
 roth=1-rcc-rbb

$$P_{ijk} = \frac{e^{-\mu}\mu^{X}}{X!}, X = N_{ijk}^{data}, \mu = N_{ijk}^{template}$$

$$N_{ijk}^{template} = \sum_{s=cc,bb,oth} (r_{s}) \frac{N^{ZH}}{N^{s}} N_{ijk}^{s} + (r_{bkg}) N_{ijk}^{bkg}$$

$$L = \prod_{ijk} P_{ijk}$$

$$L' = -\log L$$

その他のヒッグス解析

<u>解析モード</u>

8ジェット

トップ湯川結合

- $\Delta gt^2/gt^2 = \Delta \sigma ttH/\sigma ttH$
- Ecm=500GeV

信号事象

 $e^+e^- \rightarrow ttH: 0.45 fb$

背景事象

- ttZ→ttbb: 0.2fb
- ttg→ttbb: 0.7fb
- tt: 500fb
- qq(not t): 4pb
- 事象数が少なく WW: 8pb 無視できる
- ZZ: 0.58pb

<u>結果</u> 信号有意度: 7.52σ、 測定精度: 6.6%

ヒッグス自己結合

- ヒッグス自己結合
- Есм=500GeV
- L=500fb⁻¹

<u>信号事象</u>

• $e^+e^- \rightarrow ZHH \rightarrow qqbbbb : 0.157fb$

<u> 背景事象</u>

- 6f: 412.8fb
- qqqqH: 0.407fb
- ttqq: 1.08fb

<u>結果</u> 信号有意度:1~2σ

SiDの結果

<u>SiD</u>

- 背景事象除去
 - カット
 - ニューラルネット
- <u>測定精度の見積もり方(*テンプレートフィットは行わない)</u>

$$\frac{\Delta \sigma_{Hcc}}{\sigma_{Hcc}} = \frac{\sqrt{N_{ZH} + N_{bkg}}}{N_{Hcc}}$$

- <u>結果</u>
 - ニュートリノ過程:11.6%
 ハドロン過程:8.8%

ヒッグス探索@LHC

