

東北大理 齋藤智之

東北大理、阪大理、京大理、KEK 浅野雅樹、田窪洋介、鍋島偉宏、波場直之、 藤井恵介、松本重貴、山本均、吉岡興一

2010/03/20 日本物理学会@岡山大学

* 余剰次元模型におけるのシーソー機構
シーソー機構 ⇒ 右巻きニュートリノの質量
$$M_N \sim 10^{14}$$
 GeV
* 余剰次元を仮定
(arXiv:0901.4596v1[hep-ph])
 $M_N = \frac{2n-1}{2R}(n=1,2,\cdots)$
(n: KKモード R: 余剰次元の半径)
* 余剰次元の大きさがTeVスケールのとき
 $1/R \sim 100$ GeV $\Rightarrow M_N \sim 100$ GeV

Nの観測可能性の検証⇒ vの質量の起源、余剰次元

ニュートリノが縮退質量型の解析について報告する

電子モードで解析

5

縮退型

257.1

2.571

307.1

20.40

3.340

6 バックグランド GP バックグランド ⇒ 1レプトン+2ジェットに見えるイベント バックグランドの反応断面積 (fb) バックグランド Ecm=500 GeV Ecm=1TeV evW 4462 10320 **WW** -> I_Vqq 660 280.3 163 $ZZ \rightarrow IIqq+vvqq$ 32.79 tt 531 29.43

主なバックグランド:evW, WW

500 GeVの解析 [1st KK N 2nd KK N

1TeVの解析 1st KK 2nd KK 3rd KK

まとめ

余剰次元模型の右巻きニュートリノについてILCでの 反応断面積の測定精度を検証

反応断面積の測定精度(%)

Ecm	KK mode	順階層	逆階層	縮退型
500 GeV	1st KK	7.0	0.36	0.40
1TeV	1st KK	13.0	0.53	0.67
	2nd KK	-	2.4	2.7
	3rd KK	-	7.0	8.4

Ecm=1TeVでNのKKタワーを観測 → 余剰次元の存在を示唆

今後の予定

N τWモードの解析を行い分岐比の比を調べる

Back up

$$\begin{split} \mathcal{L}_{\text{int}} &= -\frac{g}{\sqrt{2}} \bar{e} W U_{\text{MNS}} P_L \nu + h.c. \\ &- \frac{g}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{e} W X P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{\nu} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 m_n m_m} \bar{N}^{(n)} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} \\ &- \sum_{n=1}^{\infty} \frac{1}{\pi R \nu} h \bar{\nu} \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_R N^{(n)} + h.c. \\ &- \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 \nu m_m} h \bar{N}^{(n)} \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} + h.c. \end{split}$$

Nの相互作用

Nはどのように観測されるのか

Nの相互作用

■ Nは弱い相互作用によりHiggsを介してSMの粒子と反応
 ■ NはCC interactionによる崩壊を用いて再構成される
 → MNS行列によりフレーバーの混合が生じる

バックグラウンドの除去

□ 2jet エネルギー 1st KK: No cut 160 GeV < 2nd KK < 250 GeV</p>

Signal r 90 GeV < 1st KK < 110 GeV 430 GeV < 2nd KK< 470 GeV</p>

バックグラウンドの除去

□ レプトンエネルギーカット ▶ 10 GeV < 1st < 100 GeV</p>

- ▶ 10 GeV < 2nd < 500 GeV
- ▶ 10 GeV < 3rd < 700 GeV
- ▶ 10 GeV < 4th < 540 GeV

- 2jetの質量カット
- 2jetのエネルギーカット

■ シグナル領域選択

- ▶ 60 GeV < W mass < 100 GeV
- ▶ 80 GeV <1st < 290 GeV
 - ▶ 180 GeV < 2nd < 560 GeV
 - ▶ 220 GeV < 3rd < 470 GeV
 - ► 280 GeV < 4th < 440 GeV
- ▶ 90 GeV <1st <110 GeV
- ▶ 280 GeV < 2nd < 320 GeV
- ▶ 480 GeV < 3rd < 520 GeV
- ► 670 GeV < 4th < 730 GeV

	Normal	Inveted	Degenerated
Ve (eV)	0	0.041	0.20
$ u \mu$ (eV)	0.009	0.05	0.21
$ u \tau (eV)$	0.059	0	0.26