

Y(5S) モードにおける CP対称性の破れの角_{∮1}の測定

Contents

1

- Y(5S)
- sin2φ₁の測定方法
- コントロールサンプルを含む、過去の解析結果との比較
- ・ カットの最適化
- まとめ・プラン

従来のsin2 ø 1 割定方法

- CP 対称性の破れを測定するのに必要なこと
- Tag side のBのフレーバーを識別する。
- CP side のBをCP 固有状態から再構成する。
- 崩壊点間距離(∆z)を測定する。

<u> 崩壊時間差(∆t)の分布にsin2</u>φ₁が現れる

- ✓ Tag side のフレーバータグに複雑なアルゴリズムが必要。
- ✓ 典型的な崩壊点間距離とSVDの測定精度が同程度。

$B\pi$ tagging (1/2)

荷電π中間子の符号からフレーバータグを行う。 • Y(5S) $\rightarrow B^0 B^+ \pi^\pm$ がシグナルモードとなる。

<u>特徴</u>

- > シンプルなフレーバータグ
- ▶ 崩壊点間距離(∆z)を測定する必要がない。
 イベント数だけで、CPの破れが見える。
- ▶ 他のモードにも応用可能。
 - $B \rightarrow \eta_c K_S, \psi(2S) K_S, \pi^+ \pi^-$

$B\pi$ tagging (2/2)

║囲

反跳質

B⁰

- B⁰ をCP 固有状態から再構成する。
 ΔE とM_{hc} は使用していない。
- 再構成したB⁰ とπ⁺ から反跳質量を求める。
- イベント数からsin 2φ₁を求める。

- 非対称度

参考となる過去の解析

Y(5S) → B^(*) B^(*)(π)(π) の崩壊分岐比測定を目的としている。

(Phys.Rev.D81,112003, A.Drutskoy) • $B^0 \rightarrow J/v$

<u>使用したモード</u>

- 崩壊分岐比が大きく、精度よく測定されていて、
 終状態に荷電粒子のみを含むモードを使用。
- $B^0 \rightarrow J/\psi K^{*0}(K\pi)$ • $B^- \rightarrow J/\psi K^-$
- $B^0 \rightarrow D^-(K2\pi) \pi^+$
- $B^- \rightarrow D^0(K\pi) \pi^-$
- $B^- \rightarrow D^0(K3\pi) \pi^-$
- 荷電B中間子を再構成すると、コントロールサンプルとなる。

→過去の解析の結果を再現してみた。

- (23.6 fb⁻¹, case A)

過去の解析の条件と、ほぼ同じ条件でイベントを再構成した。 <u>トラック選択</u> <u>qq B.G の 抑制</u>

- dr < 2 cm
- dz < 5 cm

<u>粒子識別</u>

- **Muon** and **electron** ID > 0.2
- **Kaon** : $ID(K/\pi) > 0.6$

(0.8 for K from D)

- Pion : ID(π/K) > 0.4
 運動量カット
- M_{bc} : 5.268 ~ 5.44 GeV

Mass and vertex constrained fit Vertex constrained fit $(\chi^2 < 100)$

- $|\cos\theta| < 0.75$ and R2 < 0.4 for modes with D
- $|\cos\theta| < 0.9$ and R2 < 0.5 for modes with J/ ψ

<u>質量カット</u>

- J/ψ : $|\Delta M_{J/\psi}| < 30 \text{ MeV}$ (-100 MeV for e⁺e⁻,
 - including γ within 0.05 rad)
 - $\mathbf{K^{*0}} : |\Delta M_{K^{*0}}| < 50 \text{ MeV}$
- **D** : $|\Delta M_D| < 10 \text{ MeV}$
 - $\mathbf{K}_{\mathbf{S}}$: good $\mathbf{K}_{\mathbf{S}}$ of $\mathbf{K}_{\mathbf{S}}$ finder class $|\Delta \mathbf{M}_{\mathbf{Ks}}| < 7 \text{ MeV}$

再構成したB の分布

- 以下の2つの値を求めて、過去の結果と比較した。
- Efficiency : Signal MCから求められる検出効率
- Yield : Real Data から得られるイベント数
 - フィット関数:ガウス関数(Sig.)+1次関数(B.G.)

 $B^{-} \rightarrow D^{0}(K3\pi) \pi^{+}$

過去の解析結果との比較

case A	My results	Phys.Rev.D81, 112003
$J/\psi K_{\rm S}$	$2.02 \pm 0.12 \%$ 55 ± 9	None
J/ψ K ⁻	3.73±0.28 % 223±15	3.41±0.19 % 221+16-15
J/ψ K *0	1.35±0.11 % 114±11	$1.30 \pm 0.08 \%$ 105 ± 11
$D^0(K\pi)\pi^-$	$0.95 \pm 0.02 \%$ 227 ± 21	0.97±0.03 % 215±21
$D^0(K3\pi)\pi^-$	$1.10 \pm 0.03 \%$ 299±32	$1.17 \pm 0.06 \%$ 275±32
$D^{-}(K2\pi)\pi^{+}$	$1.79 \pm 0.02 \%$ 272 ± 26	$1.80 \pm 0.08 \%$ 247 ± 25

Efficiency Yield

※PID の系統誤差は補正済み。

- → 全てのモードで、矛盾しない結果が得られた。
 <u>相違点</u>
- Multiple candidates の確率が一致しない。

→ Best Candidate selection を導入。

case Aと case Bの比較

case B (new tracking) とは

- 検出器の情報から粒子を再構成するアルゴリズムが case A (old tracking) より、改善されている。
 - SVD、CDC のトラッキングアルゴリズムの改善。
 - ECL のthreshold の最適化。

	case B	case A
$J/\psi K_{\rm S}$	$2.41 \pm 0.02 \%$	$2.16 \pm 0.02 \%$
	56 ± 8	55 ± 9
J/ψ K ⁻	4.13±0.03 %	3.98±0.03 %
	254 ± 16	223 ± 15
$J/\psi \ K^{*0}$	1.58 ± 0.02 %	$1.48 \pm 0.02 \%$
	116±11	114±11
$D^0(K\pi)\pi^-$	1.09 ± 0.01 %	1.03 ± 0.01 %
	283 ± 26	227 ± 21
$D^0(K3\pi)\pi^-$	$1.39 \pm 0.02 \%$	1.21 ± 0.02 %
	380 ± 46	299 ± 32
$D^{-}(K2\pi)\pi^{+}$	$2.06 \pm 0.02 \%$	1.96±0.02 %
	297 ± 27	272 ± 26

※PID の系統誤差は未補正

→ 予想通り、case B の方がEfficiency、yield 共に増えている。

Efficiency

Yield

予想されるイベント数

Y(5S)の全データを使った場合に、得られるイベント数を計算した。

→ sin2 \phi1 を 測定する上で、 統計的にはぎりぎり。

カットの最適化(方針)

caseB (new tracking) に合わせて、カットの最適化を行った。

- 使用したデータ: Y(4S), 107 fb⁻¹ (exp 61,63,65), case B
- 方針:1つずつカットを動かして、

Significance を最大にするカットの値を探す。

- Y(4S) とY(5S) でS/N 比が異なるため、重みを付けている。

カットの最適化 (例)

カットの値を動かして、significance が最大になる値を探した。 (例) K-ID の最適化

変更したカットの値

<u>トラック選択</u>

- dr < 2 cm \rightarrow 0.2 cm
- $dz < 5 \text{ cm} \rightarrow 2 \text{ cm}$

<u>粒子識別</u>

- **Muon** and **electron** ID > $0.2 \rightarrow 0.1$
- Kaon : $ID(K/\pi) > 0.6 \rightarrow 0.2$ (0.8 for K from D) $\rightarrow 0.4$
- **Pion** : $ID(\pi/K) > 0.4 \rightarrow 0.2$

<u>キネマティックフィット</u>

→ カットの最適化を終えたので、Y(5S)の全部のデータを用いて 解析をする(予定)。

まとめ・今後のプラン

- Y(5S) → BBπの崩壊モードを用いて、CP 対称性の破れの角sin2φ₁
 の測定を行っている。
- Bπ tagging : 荷電π 中間子の符号からB のフレーバーを識別する。
 シンプルなフレーバータグ
 - 崩壊点間距離を測定する必要がない。
 - 他のモードにも応用可能。
- コントロールサンプルとなる崩壊モードを扱っている過去の解析と
 同じ結果を得られることを確認した。
- case B(new tracking) に合わせたカットの最適化を行った。
- Y(5S)の全部のデータを使った解析を行う(予定)。