

A simulation study of beam backgrounds at the KEKB and SuperKEKB colliders

KEKB 及び SuperKEKB 衝突器における ビーム背景事象のシミュレーション研究

2011年2月2日 東北大学大学院 理学研究科 物理学専攻 素粒子実験グループ 中野 浩至 目次

Super KEKB 衝突器へのアップグレード

ビーム背景事象と衝突点近傍の設計

本研究の方法と条件

シミュレーション研究の結果

KEKBとSuperKEKBアップグレード

KEKB:電子陽電子の非対称衝突器。

B中間子を作り、CP対称性の破れを検証するBelle実験を行っている。

アップグレードの詳細

<u>最も内側にある崩壊点検出器へのビーム由来の背景事象</u>

ガス散乱

・リングの周上にて、残留ガスとの散乱 ・エネルギーが減少 or 向きが変化 (散乱率)∝(電流)・(ガスの圧力) 5

<u>最も内側にある崩壊点検出器へのビーム由来の背景事象3種類</u>

秱	類	発生場所と原因
1)	散乱されたビーム粒子	
	Touschek 効果	リングの周上、バンチ内の粒子同士の散乱
		(散乱率)∝(電流)・(密度) / (エネルギー)³
	ガス散乱	リングの周上、残留ガスとの散乱
		(散乱率)∝(電流)・(ガスの圧力)

2)シンクロトロン放射

磁石にて、ビームが曲げられた時 (熱量)∝(エネルギー)⁴

HER で重要

<u>最も内側にある崩壊点検出器へのビーム由来の背景事象3種類</u>

種類	発生場所と原因
1)散乱されたビーム料	位子
Touschek 効果	リングの周上、バンチ内の粒子同士の散乱
	(散乱率)∝(電流)・(密度) / (エネルギー)³
ガス散乱	リングの周上、残留ガスとの散乱
	(散乱率)∝(電流)・(ガスの圧力)
2)シンクロトロン放射	磁石にて、ビームが曲げられた時
	(熱量)∝(エネルギー)⁴

衝突点にて生成される (生成率)∝(ルミノシティ)

最も内側にある崩壊点検出器へのビーム由来の背景事象3種類

種類		発生場所と原因	研究担当
1)	散乱されたビーム粒子		and and and
Touschek 効果		リングの周上、バンチ内の粒子同士の散乱	A WAY
		(散乱率)∝(電流)•(密度) / (エネルギー)³	
	ガス散乱	リングの周上、残留ガスとの散乱	UNIVERSITY
		(散乱率)∝(電流)・(ガスの圧力)	_ 中野(東北)
2)シンクロトロン放射		磁石にて、ビームが曲げられた時	(3)
		(熱量)∝(エネルギー)⁴	КЕК
3)e⁺e⁻対生成		衝突点にて生成される	MPI
		(生成率)∝(ルミノシティ)	(ドイツ)

衝突点近傍

衝突点近傍

Kekb o ir

SuperKEKB の シンクロトロン光対策

上流からのシンクロトロン光

下流からのシンクロトロン光

最終四極磁石が独立し、 後方散乱の問題も回避。

上流、下流からのシンクロトロン光を両方回避できる設計を予定

SuperKEKB の 重金属マスク

<u> 交差角が 22 mrad から 83 mrad へ。 検出器の領域はそのまま確保。</u>

シミュレーション研究の手順と現状

シミュレーション研究の手順と現状

シミュレーションの内容、条件

実験値と比較するため、 ビームテストの条件にあわせた

ビームサイズ : 衝突点で 200 [um] × 2 [um] 電流 : LER 1.45 [A] / HER 0.85 [A] バンチ数 : 1584 [個]

比較する値

崩壊点検出器の占有率: (信号チャネル数)/(総チャネル数)

次に、ガス散乱・Touschek散乱の散乱率について述べる

散乱率の計算(ガス散乱)

散乱率

ガス散乱: (散乱率)∝(電流)・(ガスの圧力)

ガスの圧力はビームテスト時の真空計の値を参考にした(精度はファクター2程度)

領域によって10~100倍圧力が異なる→領域ごとに圧力を求めた 同じ領域内でも、~10倍以内の変動 →ファクター10以内の誤差

散乱率の誤差はファクター10以内

散乱率の計算(Touschek散乱)

散乱率

Touschek 効果: (散乱率)∝(電流)•(密度)/(エネルギー)³

シミュレーション結果

各リング、各散乱に対し1000万回のシミュレーションを行った。

占有率の比較

シミュレーションで求めた崩壊点検出器の占有率を、ビームテストの値と比較した

※シミュレーション値の誤差は乱数の統計誤差のみ。

最内層の占有率		シミュレーション値			ビームテスト値
LER	Touschek	0.52±0.03	8 %		0.47±0.07 %
	ガス散乱	、乱 0.45±0.05			0.19±0.07 %
HER	Touschek	0.083±0.0	02 %		0.006±0.002 %
	ガス散乱 シンクロトロン光	0.082±0.0	002 %		0.49±0.003 %
		後方散刮 0.49		乱シン 9%の	ックロトロンの寄与は うち0.1~0.4 %

ビームテストのデータ解析(by東大、杉原)

シミュレーションでの背景事象予想の妥当性が確認された

さらに、生成過程の理解を行った。

LER Touschek について述べる

生成過程(1)

生成過程(1)

生成過程(2)

生成過程(2)

生成過程(3)

26

生成過程(4)

生成過程(4)

生成過程(4)

SuperKEKB リングを用いたシミュレーション

<u>SuperKEKB の IR のシミュレーションの前段階として、</u> <u>SuperKEKB の光学で作った散乱ビーム粒子を Belle に入射させた</u>

検出器ジオメトリ

現在のBelle のまま

入射する散乱ビーム粒子情報の生成

SuperKEKB のビーム光学データで生成

SuperKEKB での放射量の見積もり

仮定 ビームパラメータはデザイン値を使用。 リング上流 300 m 以上で散乱されたビームは理想的な可動マスクによって止められる。 圧力はデザイン値の 10⁻⁷ Pa を使用 (上流 300 m までは圧力の高い領域はない)。 Touschek 散乱率はビームサイズの平均値を使用。

	SuperKEKB 光学	KEKB 光学						
最内層の放射量	シミュレーション値	測定値						
	1300 ± 150 [krad/yr]	~100 [krad/yr]						
背景事象の放射量が 100 krad / yr から1 Mrad/ yr のオーダーになる								

SuperKEKB での放射量の見積もり

32

可動マスクについて

KEKBリング上には タウシェック効果やガス散乱による背景事象を抑えるため 可動マスクが設置されている

33

<u>背景事象に寄与した粒子がどこで散乱されたのか調べた</u>

タウシェック背景事象をとめるための案

<u>エネルギーが増加したビーム粒子がとめられていない理由</u>

エネルギーの高い粒子は外側に分布する 外側にはマスクはついていない

この結果に基づき、 Touschek背景事象を抑えるため、 外側にも水平マスクを取り付けるべき という方向で検討されている。

まとめ

•SuperKEKB アップグレード計画が進行中

・電流、ビーム密度の増加により、ビーム由来の背景事象の増加が問題となる

・KEKBのシミュレーションを行い、ビームテスト値と比較した

Back up

このページ以降 Back up

ベータ

$$P(s) \propto \sigma_{e^-e^-} \frac{N}{\sigma_x(s)\sigma_y(s)} \Delta s$$

RICおおよそ比例する値がどの程度異なってくるか。

$$\frac{1}{\sqrt{\beta_{xi}\beta_{yi}}}$$
 $\frac{1}{\sqrt{22.93 \times 17.16}} = 0.0504$

$$\Sigma \frac{L_i/3016}{\sqrt{\beta_{xi}\beta_{yi}}}$$

layer 1 dose [krad/yr]		simulation	data			layer 1
LER	Touschek	10.5 ± 0.6		LER	Touschek	1060 ± 150
	Coulomb	7.6 ± 1.0			Coulomb	150 ± 10
	brems	1.24 ± 0.02			brems	1.6 ± 0.2
HER	Touschek	2.60 ± 0.05		HER	Touschek	0.02 ± 0.02
	Coulomb	0.98 ± 0.04			Coulomb	102 ± 6
	brems	1.60 ± 0.03			brems	5.8 ± 0.4
Total		24.5 ± 1.2	$100 \sim 200$	Total		1300 ± 150

$$\sigma_z\gtrsimeta_{x,y}^*$$
 :

で、hourglass 効果が顕著

しかし、effectiveなバンチ長Lが

なら、OK

LER/HER	KEKB	KEKB	SuperKEKB
	Design	with crab	Nano-Beam
$\beta_y^* \text{ (mm)}$	10/10	5.9/5.9	0.27/0.30
$\beta_x^* \text{ (mm)}$	330/330	1200/1200	32/25
$\sigma_z \ (\text{mm})$	4	~ 6	6/5
2ϕ (rad)	22	22	83

ガス散乱(ビームパイプ内の残留ガスに散乱される)

Table 3.1: 1	Beam p	arameters	of	KEKB	and	SuperKEKB	[7	7]
--------------	--------	-----------	----	------	-----	-----------	----	----

LER/HER	KEKB	KEKB	SuperKEKB
	Design	with crab	Nano-Beam
Energy (GeV)	3.5/8.0	3.5/8.0	4.000/7.007
β_y^* (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
$\epsilon_x \text{ (nm)}$	18/18	18/24	3.2/4.3
$\sigma_y^* \ (\mu \mathrm{m})$	1.9	0.94	0.048/0.063
$\sigma_x^* \ (\mu \mathrm{m})$	77/77	147/170	10/10
ξ_y	0.052	0.129/0.090	0.0869/0.0807
$\sigma_z \ (mm)$	4	~ 6	6/5
2ϕ (rad)	22	22	83
I_{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
$N_{bunches}$	5000	1584	2500
$\mathcal{L}~(10^{34} { m cm}^{-2} { m s}^{-1})$	1	2.11	80

$$\xi_{y,+} \equiv \frac{r_e N_- \beta_{y,+}^*}{2\pi \gamma_- \sigma_{y,-}^* (\sigma_{x,-}^* + \sigma_{y,-}^*)} R_{\xi_y}$$

Touschek 公式

A. Piwinski. The touschek effect in strong focusing storage rings, Mar 1999.

$$R_{\text{Tous}} = \frac{r_p^2 c \beta_x \beta_y \sigma_h N_p^2}{8\sqrt{\pi}\beta^2 \gamma^4 \sigma_x^2 \sigma_y^2 \sigma_z \sigma_p} \int_{\tau_m}^{\infty} d\tau \left\{ \left(2 + \frac{1}{\tau}\right)^2 \left(\frac{\tau/\tau_m}{1+\tau} - 1\right) + 1 - \sqrt{\frac{1+\tau}{\tau/\tau_m}} - \frac{1}{2\tau} \left(4 + \frac{1}{\tau}\right) \ln \frac{\tau/\tau_m}{1+\tau} \right\} e^{-B_1 \tau} I_0(B_2 \tau) \sqrt{\frac{\tau}{1+\tau}}.$$

$$\begin{aligned} \frac{1}{\sigma_h^2} &= \frac{1}{\sigma_p^2} + \frac{D_x^2 + \tilde{D}_x^2}{\sigma_x^2} + \frac{D_y^2 + \tilde{D}_y^2}{\sigma_y^2} \\ B_1 &= \frac{\beta_x^2}{2\beta^2\gamma^2\sigma_x^2} \left(1 + \frac{\sigma_h^2\tilde{D}_x^2}{\sigma_x^2}\right) + \frac{\beta_y^2}{2\beta^2\gamma^2\sigma_y^2} \left(1 + \frac{\sigma_h^2\tilde{D}_y^2}{\sigma_y^2}\right) \\ B_2 &= \frac{1}{4\beta^4\gamma^4} \left(\frac{\beta_x^2}{\sigma_x^2} \left(1 - \frac{\sigma_h^2\tilde{D}_x^2}{\sigma_x^2}\right) - \frac{\beta_y^2}{\sigma_y^2} \left(1 - \frac{\sigma_h^2\tilde{D}_x^2}{\sigma_x^2}\right)\right)^2 + \frac{\sigma_h^4\beta_x^2\beta_y^2\tilde{D}_x^2\tilde{D}_y^2}{\beta^4\gamma^4\sigma_x^4\sigma_y^4} \\ \tau_m &= \beta^2\delta_m^2 \\ \tilde{D}_{x,y} &= \alpha_{x,y}D_{x,y} + \beta_{x,y}D'_{x,y} \end{aligned}$$

Coulomb, bremsstrahlung 公式

S K Sahu T E Browder, editor. Proceedings of the Second Workshop on BACK-GROUNDS AT THE MACHINE-DETECTOR INTERFACE. World Scientific, (1998)

$$\frac{d\sigma_{\rm coul}}{d\Omega} = \frac{Z^2 \alpha^2}{4\beta^2 |\vec{p}|^2 {\rm sin}^4 \frac{\theta}{2}}$$

$$\begin{aligned} \frac{d\sigma_{\text{brem}}}{d\epsilon} &= \frac{r_0^2 \alpha Z[Z + \xi(Z)]}{\epsilon} \left\{ [1 + (1 - \epsilon)^2] [\Phi_1(\delta) - F(Z)] - \frac{2}{3} (1 - \epsilon) [\Phi_2(\delta) - F(Z)] \right\} \\ &\qquad \delta = \frac{136m_e}{Z^{1/3}E} \cdot \frac{\epsilon}{1 - \epsilon} \\ &\qquad \Phi_1 = 20.867 - 3.242\delta + 0.625\delta^2 \\ &\qquad \Phi_2 = 20.209 - 1.930\delta - 0.086\delta^2 \right\} \text{for } \delta \le 1 \\ &\qquad \Phi_1 = \Phi_2 = 21.12 - 4.184\ln(\delta + 0.952) \quad \text{for } \delta > 1 \\ &\qquad \Phi_1 = \Phi_2 = 21.12 - 4.184\ln(\delta + 0.952) \quad \text{for } \delta > 1 \\ &\qquad F(Z) = \begin{cases} 4/3\ln ZE < 0.05 \text{ GeV} \\ 4/3\ln Z + 4f_c(Z)E \ge 0.05 \text{ GeV} \end{cases} \end{aligned}$$

f

$$\xi(Z) = \frac{\ln(1440/Z^{2/3})}{\ln(183/Z^{1/3}) - f_c(Z)}$$

$$f_c(Z) = Z\alpha \left\{ \frac{1}{1 + Z\alpha} + 0.20206 - 0.0369Z\alpha + 0.0083(Z\alpha)^2 - 0.002(Z\alpha)^3 \right\}$$

