Status and Physics Prospects of the SuperKEKB Project

Tohoku Univ. (Japan)

5th March 2011, La Thuile 2011

KEKB Collider

KEKB parameters

- ▶ HER (e⁻): 8.0 GeV
- LER (e⁺): 3.5 GeV
- ► E_{CMS} = Y(4S) mass
 → B meson pair
- Peak luminosity = 2.1 x 10³⁴ /cm²s
 - Integrated luminosity > | ab⁻¹ (June 1999 - June 2010) World records

Belle Detector

A Success Story at B-Factories

Discovery of CP violation in the B system

Measurements of the CKM matrix elements

4

Upgrades

SuperKEKB Collider

Approved in 2010.

Peak Luminosity

Schedule

8

Detector Upgrade

Detector Upgrade

Particle Identification System at Belle II

More information of Belle II detector: "Belle II Technical Design Report" at <u>arXiv:1011.0352</u>.

Physics at SuperKEKB/Belle II

A benefit to use $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

One B meson ("tag" side) can be reconstructed in a common decay. Flavor, charge, and momentum of the other B can be determined.

$B \rightarrow \tau v$

• Evidence obtained at the B factories.

Example w/ semileptonic tag, 0.6 ab⁻¹ PRD 82, 071101 (2010)

$$\mathcal{B}(B^- \to \tau^- \overline{\nu}_\tau) = (1.54^{+0.38}_{-0.37} (\text{stat})^{+0.29}_{-0.31} (\text{syst})) \times 10^{-4}$$

Tension between the global CKM fit and direct measurement.

Better measurement of $B \rightarrow \tau v$ may reveal source of the tension. Tag-side information is vital for $\ge 2v$'s.

$B \rightarrow \tau \nu$ at Belle II

In Two-Higgs Doublet Model (THDM) Type II, the branching ratio of $B \rightarrow \tau v$ can be modified.

$$\mathcal{B}(B^- \to \tau^- \nu) = \mathcal{B}_{\rm SM}(B^- \to \tau^- \nu) \left[1 - \frac{m_B^2}{m_{H^\pm}^2} \tan^2 \beta \right]^2$$

tan β

100

Constrains on $m_{H\pm}$ and $tan\beta$ can be obtained.

5 ab⁻¹ 50 ab⁻¹ ⁸⁰⁰ assuming 5% errors ⁸⁰⁰ assuming 2.5% errors for $|V_{\mu\nu}|$ and f_{B} . for $|V_{ub}|$ and f_{B} . H[±] Mass (GeV/c²) 00 00 00 200 200 5 σ discovery region Tevatron Run I Tevatron Run I LEP Excluded (9 current 95% exclusion LEP 20 40 60 80 100 20 40 60 80 tan β

Direct CP Violation for $B \rightarrow K\pi$

If the only diagrams are **a** and **b**, we expect $\Delta A \equiv A_{K^{\pm}\pi^{0}} - A_{K^{\pm}\pi^{\mp}} = 0$

However, significant difference is obtained.

 $\Delta \mathcal{A} = +0.164 \pm 0.037$

B→Kπ w/ 0.5 ab⁻¹ Nature 452, 332 (2008)

Missing diagrams? Large theoretical uncertainty...

Direct CP Violation for $B \rightarrow K\pi$ at Belle II

We can compare to a model-independent sum rule:

$$A_{\rm CP}(K^+\pi^-) + A_{\rm CP}(K^0\pi^+) \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+}$$

= $A_{\rm CP}(K^+\pi^0) \frac{2\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{\rm CP}(K^0\pi^0) \frac{2\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)}$

Decays of $\boldsymbol{\tau}$

Example: $\tau \rightarrow \mu \gamma$

 Can be enhanced by the effects of new physics in the loop diagram.

Br(τ→μγ)
10-7
10 ⁻⁸
10 -9
10 -9
10 ⁻¹⁰

Belle II provides good sensitivities on the τ decays.

More information of physics prospects: "Physics at Super B Factory" at <u>arXiv:1002.5012</u>.

KEK collider Belle detector

SuperKEKB collider Belle II detector

Operation from 1999 to 2010. Peak luminosity = 2.1×10^{34} / cm²s. Integrated luminosity = 1.0 ab⁻¹. Aim to start commissioning in 2014. Target of peak luminosity = 8×10^{35} / cm²s. Target of integrated luminosity = 50 ab⁻¹ by 2021.

- ► Significant opportunities to search for new physics at SuperKEKB/Belle II. (B→ τv , B→ $K\pi$, τ decays, etc.)
- More information:
 - "Belle II Technical Design Report" at <u>arXiv:1011.0352</u>.
 - " "Physics at Super B Factory" at <u>arXiv:1002.5012</u>.

Backup Slides

KEKB Collider

100 oku-yen (~100 million dollars) approved in summer 2010.

- Upgrade approved by the cabinet in December 2010.
- Waiting for the final approval by the Diet.

Belle II Detector

Have to deal with:

- Higher background (10-20x) radiation damage, higher occupancy
- Higher event rates
 DAQ (L1 trigg. 0.5 →20 kHz)
- Improved performance hermeticity

Other Upgrades for Belle II

Silicon vertex detector: new readout chip (APV25) shorter integration time (800 ns \rightarrow 50 ns)

<u>Calorimeter</u>: new readout system with waveform sampling (x1/7 BG reduction)

Drift chamber: smaller cells

Expected Performance for Belle II

Beam pipeBeryllium double-wallCylindrical, inner radius 10 mm, 10 μ m Au, 0.6 mm Be, 1 mm coolant (paraffin), 0.4 mm Beimma colant (paraffin), 0.4 mm BePXDSilicon pixelSensor size: 15×100 (120) mm²10 M(DEPFET)pixel size: 50×50 (75) μ m²10 M2 layers: 8 (12) sensors245 kSVDDouble sidedSensors: rectangular and trapezoidal245 kSilicon stripStrip pitch: 50(p)/160(n) - 75(p)/240(n) μ m4 layers: 16/30/56/85 sensorsCDCSmall cell56 layers, 32 axial, 24 stereo14 kdrift chamberr = 16 - 112 cm $\sigma_{p_c}/p_t = \sqrt{(0.2\%p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)- 83 $\leq z \leq 159$ cm $\sigma_{dE/dx} = 5\%$ TOPRICH with quartz radiator16 segments in ϕ at $r \sim 120$ cm8 kNp.e. $\sim 20, \sigma_t = 40$ psK/ π separation : efficiency 99% at <0.5% pionARICHRICH with aerogel radiator4 cm thick focusing radiator for the forward end-cap78 kECLCsI(TI)Barrel: $r = 125 - 162$ cm6624Growered structure)End-cap: $z =$ 1152 (F)-102 cm and +196 cm960 (B)(E in GeV)KLMbarrel: RPCs14 layers of ($T - 10$) × 40 mm² strips17 kAd $\phi = \Delta \theta = 20$ mardian for K_L $\sim 1\%$ hadron fake for nuons $\Delta \phi = \Delta \theta = 10$ mardian for K_L $\sim 1\%$ hadron fake for nuons	Component	Type	Configuration	Readout	Performance
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		double-wall	$10~\mu{\rm m}$ Au, 0.6 mm Be,		
PXDSilicon pixel (DEPFET)Sensor size: $15 \times 100 (120) \text{ mm}^2$ 10 M (DEPFET) pixel size: $50 \times 50 (75) \ \mu\text{m}^2$ 10 M $2 \text{ layers: } 8 (12) \text{ sensors}$ $2 \text{ layers: } 8 (12) \text{ sensors}$ 245 kSVDDouble sided Silicon stripSensors: rectangular and trapezoidal 4 layers: $16/30/56/85 \text{ sensors}$ 245 kCDCSmall cell drift chamber56 layers, $32 \text{ axial}, 24 \text{ stereo}$ 14 k $\sigma_{r\phi} = 100 \ \mu\text{m}, \sigma_z = 2 \text{ mm}$ $\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)TOPRICH with quartz radiator16 segments in ϕ at $r \sim 120 \text{ cm}$ 8 k $N_{p.e.} \sim 0.30 \ \sigma_{dE}/dx = 5\%$ TOPRICH with aerogel radiator16 segments in ϕ at $r \sim 120 \text{ cm}$ 8 k $N_{p.e.} \sim 0.30 \ \sigma_{dE}/dx = 5\%$ ARICHRICH with aerogel radiator4 cm thick focusing radiator for the forward end-cap78 k $N_{p.e.} \sim 13$ ECLCsI(TI)Barrel: $r = 125 \cdot 162 \text{ cm}$ 6624 $\frac{\sigma_E}{E} = \frac{0.2\%}{0.5\%} = \frac{0.5 \text{ m}}{\sqrt{2}} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pog} = 0.5 \text{ m}/\sqrt{E}$ LKMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap $\theta: 16 \text{ k}, \phi: 16 \text{ k}$ $\Delta\phi = \Delta\theta = 20 \text{ mradian for } K_L$ $\sim 1\%$ hadron fake for muonskLMbarrel: RPCs14 layers (7 (-10) × 40 mm^2 strips17 k $\Delta\phi = \Delta\theta = 10 \text{ mradian for } K_L$ $\sim 1\%$ hadron fake for muons			1 mm coolant (paraffin), 0.4 mm Be		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0} \sim 20 \ \mu \text{m}$
SVDDouble sided Silicon stripSensors: rectangular and trapezidal Strip pitch: 50(p)/160(n) - 75(p)/240(n) μ m 4 layers: 16/30/56/85 sensors245 kCDCSmall cell drift chamber56 layers, 32 axial, 24 stereo r = 16 - 112 cm - 83 $\leq z \leq 159$ cm14 k $\sigma_{r\phi} = 100 \ \mu$ m, $\sigma_z = 2 \ mm$ $\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD) $\sigma_{dE/dx} = 5\%$ TOPRICH with quartz radiator16 segments in ϕ at $r \sim 120 \ cm$ with 4x4 channel MCP PMTs8 k $N_{p.e.} \sim 20, \sigma_t = 40 \ ps$ K/π separation : efficiency > 99% at < 0.5\% \ pion fake prob. for $B \rightarrow \rho\gamma$ decaysARICHRICH with aerogel radiator4 cm thick focusing radiator for the forward end-cap78 k $N_{p.e.} \sim 13$ ECLCsI(TI)Barrel: $r = 125 \cdot 162 \ cm$ 6624 $\frac{\sigma E}{E} = \frac{0.2\%}{0.2\%} \oplus \frac{1.6\%}{0.1\%} \oplus 1.2\%$ ECLCsI(TI)Barrel: $r = 125 \cdot 162 \ cm$ 6624 $\frac{\sigma E}{E} = \frac{0.2\%}{0.2\%} \oplus \frac{1.6\%}{0.1\%} \oplus 1.2\%$ KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) $2 \ RPCs$ in each gap θ : 16 k, ϕ : 16 k $\sim 1\%$ hadron fake for mutons $\sim 10\%$ hadron fake for mutons $\sim 1\%$ hadron fake for mutons			2 layers: 8 (12) sensors		(PXD and SVD)
Silicon strip Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$ 4 layers: 16/30/56/85 sensors CDC Small cell 56 layers, 32 axial, 24 stereo 14 k $\sigma_{r\phi} = 100 \ \mu m, \sigma_z = 2 \ \text{mm}}$ $\sigma_{r\phi} = 100 \ \mu m, \sigma_z = 2 \ \text{mm}}$ $\sigma_{p_t}/p_t = \sqrt{(0.2\%p_t)^2 + (0.3\%/\beta)^2}$ (with SVD) $\sigma_{dE/dx} = 5\%$ TOP RICH with 16 segments in ϕ at $r \sim 120 \ \text{cm}}$ 8 k $N_{p,e} \sim 20, \sigma_t = 40 \ \text{ps}}$ $TOP RICH with 275 \ \text{cm} \log, 2 \ \text{cm} \text{ thick quartz bars}}$ with 4x4 channel MCP PMTs K/π separation : efficiency 99% at $< 0.5\%$ pion fake prob. for $B \rightarrow \rho\gamma$ decays ARICH RICH with aerogel radiator and HAPD photodetectors for the forward end-cap $CSI(TI)$ Barrel: $r = 125 - 162 \ \text{cm}}$ 6624 $\frac{\sigma_E}{E} = \frac{0.2\%}{E} \oplus \frac{16\%}{\sqrt{E}} \oplus 1.2\%$ (Towered structure) End-cap: $z = 1152 \ (F)$ $\sigma_{pos} = 0.5 \ \text{cm}/\sqrt{E}$ $-102 \ \text{cm} \text{ and } +196 \ \text{cm}}$ $960 \ (B)$ (E in GeV) KLM barrel: RPCs 14 layers (5 \ \text{cm} Fe + 4 \ \text{cm} gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20 \ \text{mradian for } K_L$ $2 \ RPCs \ 14 \ \text{layers} (7 - 10) \times 40 \ \text{mm}^2 \ \text{strips}$ $17 \ \text{k}$ $\Delta \phi = \Delta \theta = 10 \ \text{mradian for } K_L$ $\sigma_{r/\sigma} = 18\% \ \text{for } 1 \ \text{GeV}/c_K \ K_T$	SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Silicon strip	Strip pitch: 50(p)/160(n) - 75(p)/240(n) μm		
CDCSmall cell drift chamber56 layers, 32 axial, 24 stereo r = 16 - 112 cm - 83 $\leq z \leq 159$ cm14 k $\sigma_{r\phi} = 100 \ \mu m, \sigma_z = 2 \ mm$ $\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD) $\sigma_{dE/dx} = 5\%$ TOPRICH with quartz radiator16 segments in ϕ at $r \sim 120 \ cm$ with 4x4 channel MCP PMTs8 k $N_{p.e.} \sim 20, \sigma_t = 40 \ ps$ K/π separation : efficiency > 99% at < 0.5\% \ pion fake prob. for $B \to \rho\gamma$ decaysARICHRICH with aerogel radiator4 cm thick focusing radiator for the forward end-cap78 k $N_{p.e.} \sim 13$ K/π separation at 4 GeV/c: efficiency 96% at 1% pion fake prob.ECLCsI(TI)Barrel: $r = 125 - 162 \ cm$ 6624 $\frac{\partial E}{E} = \frac{0.2\%}{E} \oplus \frac{1.8\%}{\sqrt{E}} \oplus 1.2\%$ $\sqrt{EE} \oplus 1.2\%$ KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) $2 \ RPC$'s in each gap θ : 16 k, ϕ : 16 k $\Delta\phi = \Delta\theta = 20 \ mradian for K_L\sim 1\% hadron fake for muonsend-caps:14 layers (7 - 10) × 40 \ mm^2 strips17 k\Delta\phi = \Delta\theta = 10 \ mradian for K_L\sigma_r = 16\% for 1 GeV/c K r.$			4 layers: 16/30/56/85 sensors		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu \text{m}, \ \sigma_z = 2 \ \text{mm}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)
TOPRICH with quartz radiator16 segments in ϕ at $r \sim 120$ cm8 k $N_{p.e.} \sim 20, \sigma_t = 40$ psQuartz radiator275 cm long, 2 cm thick quartz bars with 4x4 channel MCP PMTs K/π separation : efficiency > 99% at < 0.5% pion fake prob. for $B \rightarrow \rho\gamma$ decaysARICHRICH with aerogel radiator4 cm thick focusing radiator78 k $N_{p.e.} \sim 13$ ARICHRICH with aerogel radiator4 cm thick focusing radiator78 k $N_{p.e.} \sim 13$ ECLCsI(TI)Barrel: $r = 125 - 162$ cm6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{E} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L ~ 1 % hadron fake for muonsend-caps: scintillator strips14 layers of $(7 - 10) \times 40$ mm² strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L $\sigma_c/n = 18\%$ for 1 GeV/c K_L					$\sigma_{dE/dx} = 5\%$
quartz radiator275 cm long, 2 cm thick quartz bars with 4x4 channel MCP PMTs K/π separation : efficiency > 99% at < 0.5% pion fake prob. for $B \rightarrow \rho\gamma$ decaysARICHRICH with aerogel radiator4 cm thick focusing radiator and HAPD photodetectors for the forward end-cap78 k $N_{p.e.} \sim 13$ ECLCsI(Tl)Barrel: $r = 125 - 162$ cm6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt{E}} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L ~ 1 % hadron fake for muonsend-caps:14 layers of $(7 - 10) \times 40$ mm ² strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L $\sigma_{P}/\rho_{I} = 18\%$ for 1 GeV/ c K r	TOP	RICH with	16 segments in ϕ at $r \sim 120$ cm	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \text{ ps}$
with 4x4 channel MCP PMTsefficiency > 99% at < 0.5% pion fake prob. for $B \rightarrow \rho\gamma$ decaysARICHRICH with aerogel radiator4 cm thick focusing radiator and HAPD photodetectors for the forward end-cap78 k $N_{p.e.} \sim 13$ ECLCsI(TI)Barrel: $r = 125 - 162$ cm6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt{E}} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L ~ 1 % hadron fake for muonsend-caps:14 layers of $(7 - 10) \times 40$ mm ² strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L $\sigma_p/n = 18\%$ for 1 GeV/c K production		quartz radiator	275 cm long, 2 cm thick quartz bars		K/π separation :
ARICHRICH with aerogel radiator4 cm thick focusing radiator78 k $N_{p.e.} \sim 13$ aerogel radiatorand HAPD photodetectors for the forward end-capK/ π separation at 4 GeV/c: efficiency 96% at 1% pion fake prob.ECLCsI(Tl)Barrel: $r = 125 - 162$ cm6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[3]{E}} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} -102 cm and +196 cm960 (B)(E in GeV)KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L end-caps:14 layers of $(7 - 10) \times 40$ mm ² strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L scintillator stripsread out with WLS and G-APDs17 k $\Delta \phi = 18\%$ for 1 GeV/c K			with 4x4 channel MCP PMTs		efficiency $> 99\%$ at $< 0.5\%$ pion
ARICH RICH with aerogel radiator 4 cm thick focusing radiator 78 k $N_{p.e.} \sim 13$ aerogel radiator and HAPD photodetectors for the forward end-cap K/ π separation at 4 GeV/c: efficiency 96% at 1% pion fake prob. ECL CsI(Tl) Barrel: $r = 125 - 162$ cm 6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[4]{4E}} \oplus 1.2\%$ (Towered structure) End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5$ cm/ \sqrt{E} -102 cm and +196 cm 960 (B) (E in GeV) KLM barrel: RPCs 14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L end-caps: 14 layers of $(7 - 10) \times 40$ mm ² strips 17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L scintillator strips read out with WLS and G-APDs 17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L					fake prob. for $B \to \rho \gamma$ decays
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ARICH	RICH with	4 cm thick focusing radiator	78 k	$N_{p.e.} \sim 13$
for the forward end-capefficiency 96% at 1% pion fake prob.ECLCsI(Tl)Barrel: $r = 125 - 162 \text{ cm}$ 6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[4]{E}} \oplus 1.2\%$ (Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$ -102 cm and +196 cm960 (B)(E in GeV)KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L 2 RPCs in each gap~ 1 % hadron fake for muonsend-caps:14 layers of $(7 - 10) \times 40 \text{ mm}^2$ strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L scintillator stripsread out with WLS and G-APDs $\sigma_{r}/p = 18\%$ for 1 GeV/c K I		aerogel radiator	and HAPD photodetectors		K/π separation at 4 GeV/c:
ECLCsI(Tl)Barrel: $r = 125 - 162 \text{ cm}$ 6624 $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[3]{E}} \oplus 1.2\%$ (Towered structure)(Towered structure)End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$ (E in GeV)KLMbarrel: RPCs14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L ~ 1 % hadron fake for muonsend-caps:14 layers of $(7 - 10) \times 40 \text{ mm}^2$ strips17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L $\sigma_p/p = 18\%$ for 1 GeV/c K_L			for the forward end-cap		efficiency 96% at 1% pion fake prob.
(Towered structure) End-cap: $z =$ 1152 (F) $\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$ -102 cm and +196 cm 960 (B) (E in GeV) KLM barrel: RPCs 14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20 \text{ mradian for } K_L$ 2 RPCs in each gap $\sim 1 \%$ hadron fake for muons end-caps: 14 layers of $(7 - 10) \times 40 \text{ mm}^2$ strips 17 k $\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$ scintillator strips read out with WLS and G-APDs $\sigma_T/p = 18\%$ for 1 GeV/c K _L	ECL	CsI(Tl)	Barrel: $r = 125 - 162 \text{ cm}$	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[4]{E}} \oplus 1.2\%$
-102 cm and +196 cm 960 (B) (E in GeV) KLM barrel: RPCs 14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L 2 RPCs in each gap 2 RPCs in each gap ~ 1 % hadron fake for muons end-caps: 14 layers of $(7 - 10) \times 40$ mm ² strips 17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L scintillator strips read out with WLS and G-APDs $\sigma_T/p = 18\%$ for 1 GeV/c K _L		(Towered structure)	End-cap: $z =$	1152 (F)	$\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$
KLM barrel: RPCs 14 layers (5 cm Fe + 4 cm gap) θ : 16 k, ϕ : 16 k $\Delta \phi = \Delta \theta = 20$ mradian for K_L 2 RPCs in each gap $\sim 1 \%$ hadron fake for muons end-caps: 14 layers of $(7 - 10) \times 40$ mm ² strips 17 k $\Delta \phi = \Delta \theta = 10$ mradian for K_L scintillator strips read out with WLS and G-APDs $17 k$ $\Delta \phi = \Delta \theta = 10$ mradian for K_L			-102 cm and +196 cm	960 (B)	(E in GeV)
$\begin{array}{ccc} 2 \ \text{RPCs in each gap} & \sim 1 \ \% \ \text{hadron fake for muons} \\ \text{end-caps:} & 14 \ \text{layers of} \ (7-10) \times 40 \ \text{mm}^2 \ \text{strips} & 17 \ \text{k} & \Delta \phi = \Delta \theta = 10 \ \text{mradian for} \ K_L \\ \text{scintillator strips} & \text{read out with WLS and G-APDs} & \sigma_{T}/p = 18\% \ \text{for } 1 \ \text{GeV/c} \ K_L \end{array}$	KLM	barrel: RPCs	14 layers (5 cm Fe + 4 cm gap)	θ: 16 k, φ: 16 k	$\Delta \phi = \Delta \theta = 20 \text{ mradian for } K_L$
end-caps: 14 layers of $(7-10) \times 40 \text{ mm}^2$ strips 17 k $\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$ scintillator strips read out with WLS and G-APDs $\sigma_T/p = 18\%$ for 1 GeV/c K _L			2 RPCs in each gap		~ 1 % hadron fake for muons
scintillator strips read out with WLS and G-APDs $\sigma_{\rm T}/p = 18\%$ for 1 GeV/c Kr		end-caps:	14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$	17 k	$\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$
$\frac{1}{10000000000000000000000000000000000$		scintillator strips	read out with WLS and G-APDs		$\sigma_p/p = 18\%$ for 1 GeV/c K_L