

中性B中間子の DK*⁰希少崩壊の研究

2011年 8月 18日 東北大学 根岸 健太郎

目次

- Belle実験
- CP非保存角∮₃
- B⁰ → DK*⁰の解析
- 結果
- まとめ

Belle実験

- Belle実験 – e⁺e⁻衝突でY(4S)を生成 → B⁰B⁰ ~ 50 %
- KEKB加速器 :電子 8.0 GeV、陽電子 3.5 GeV

重心エネルギー10.6 GeVの非対称衝突型加速器

CP非保存角_{\$3}

ユニタリ三角形 CKM機構 :弱い相互作用でのCP非保存を示唆 W - クオークとWボゾンの相互作用のラグランジアン $\mathcal{L}_{int}(x) = -\frac{g}{\sqrt{2}} (V_{CKM} \overline{U_L} \gamma_L D_L W_{\mu}^+) + h.c.$ $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \qquad U = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D = \begin{pmatrix} d \\ s \\ b \end{pmatrix}$ U,, D,: 左巻き成分 CKM行列はユニタリ: $V_{CKM}^{\dagger}V_{CKM} = 1$ b列,d列に関してユニタリ条件 $(\overline{\rho},\overline{\eta})$ $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \bigg|$ $\frac{V_{td}^{} V_{tb}^{*}}{V_{cd}^{} V_{cb}^{*}}$ 複素平面上に三角形を描く ullet- 三角形の面積 ≠ 0 ⇔ CP非保存 ユニタリ三角形の角の一つ∮₃を測定 $\gamma = \phi_{\gamma}$ $\beta = \phi_1$ (0.0)(1.0) $\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{ud}V^*}\right)$

CP非保存角

φ₃測定

b→u遷移を含む、経路を持つ
 干渉を利用する事でφ₃の効果
 を測定する。

 K*を荷電Kπで再構成する事でK*⁰の フレイバーが決定 →Bのフレイバーが一意に決まる

B⁰-B⁰混合の効果無しにφ₃抽出可能

ADS法

・ 典型的に求める2つの変数

R_{ADS} < 0.24 (95 % C.L. by BaBar)

B⁰ → DK*⁰の解析

イベント選択、再構成

- K[±]/π[±]同定
 - Efficiency ~ 90%, Fake rate ~ 10 %

 $m_{D0} = 1.865 \text{ GeV}$ $m_{K^{*0}} = 0.896 \text{ GeV}$ $m_{B0} = 5.280 \text{ GeV}$

コンテニウムバックグラウンドの抑制 (KSFW,cosθ_B)

イベントの形状からシグナルと

コンテニウムバックグラウンドの尤度比(LR_{KSFW})を求める。 Belleの解析では一般的に使われる手法

P₁: ルジャンドル関数

θ_{i,i}:i番目j番目の粒子の運動量の成す角

- e⁺e⁻重心系のBの角度分布(cosθ_B)も使う。
 - Bイベントは軌道角運動量1となる

シグナル :1-cos²θ コンテニウム :ほぼ一様

コンテニウムバックグラウンドの抑制 (NeuroBayes)

コンテニウムバックグラウンド抑制により多くの変数を用いる。
 ニューラルネット利用した。(NeuroBayesと呼ばれるパッケージ)

$\mathbf{NB}^{\mathsf{TRANS}}$

- 系統誤差の見積もりの簡単の為、NBをNBTRANSに変換
- NBTRANSはガウシアンの様な分布になります

Bイベントからのバックグラウンド

- D*イベント
 D*+ → D⁰π⁺崩壊のD⁰をとらえて
 シグナルを再構成してしまう
 ΔM < 0.15 GeV のイベントを除去
- cosθ_{K*}カット
 BBバックグラウンドでcosθ_{K*} ~ 1に鋭くピーク
 0.12 0.13 0.14
 cosθ_{K*} < 0.8 を要求
- $B^0 \rightarrow \overline{D}^0 \rho^0$ $\rho^0 \rightarrow \pi^+ \pi^ \pi$ 一つKと誤認識を含み、 $\Delta E \sim 0.05 \text{ GeV}$ にピーク モンテカルロを生成し、フィットに加える

uu. dd. ss

0.07 ΔM ~ m_π (0.140 GeV)にピーク

 $\Delta \mathbf{M}$

0.06

0.05

0.04

0.03

0.02

Probability

•赤い破線	: シグナル
•明緑色破線	: Bイベント
•緑色破線	: $\overline{D}{}^0 \rho^0$
•紫色破線	:コンテニウム
•青い実線	: 合計
•誤差棒付き点	: データ

- 得られたシグナル数 = 117 ± 15
- 崩壊分岐比 = (3.68 ± 0.48)*10⁻⁵
- PDG Br($B^0 \rightarrow \overline{D}^0 K^{*0}$) = (4.2 ± 0.6)*10⁻⁵
- 標準偏差 0.7 σ
- PDGと無矛盾なシグナルが得た。

Fit to suppressed mode on the data

$$\mathsf{R}_{\mathsf{DK}^*}$$

Favored signal yield = 117 ± 15 Suppressed signal yield = 3.0 ± 8.9

Favored mode efficiency = (17.11 ± 0.3) % Suppressed mode efficiency = (20.98 ± 0.3) %

$$\mathcal{R}_{DK^{*0}} \equiv \frac{\mathcal{B}(B^0 \to [K^- \pi^+]_D K^{*0})}{\mathcal{B}(B^0 \to [K^+ \pi^-]_D K^{*0})} = \frac{N_{sup.}/\epsilon_{sup.}}{N_{fav.}/\epsilon_{fav.}}$$

まとめ

- 本解析モードB⁰→DK*⁰崩壊はφ₃測定に有用
 より一層の研究が求められる。
- R_{DK*}を求めた。
 - 観測にかからず、

今後syst. studyを経て、upper limitを付ける。 R_{DK*} < 0.24 (95 % C.L. BaBar)

BACK UP

結果

= (3.68 ± 0.48(統計誤差) ± 0.(系統誤差))

•	$Br(B^0 \to [K^+\pi^-]DK^{*0}) \sim Br(B^0 \to \overline{D}^0K^{*0})$	
---	---	--

誤差の起源	(%)
BBペアの数	± 1.4
トラックの検出効率 1トラック当たり±0.35 %	± 1.4
シグナルの検出効率	± 1.5
崩壊分岐比Br(D⁰→Kπ)の不確定	± 1.3
フィットバイアス 1,000回の疑似イベントのフィットより	± 0.4
PDF shape	
수計	

測定結果

	Br(B ⁰ →D ⁰ K* ⁰)	(* 10 -5)
本解析	$3.68 \pm 0.48 \pm 0.$	
前回のBelle実験の解析(85M BB) PRL 90, 141802 (2003)	4.8 $^{+1.1}_{-1.0}$ ± 0.5	
PDG	4.2 ± 0.6	

- 本解析の結果は、統計、系統誤差共に小さくなっている。
- 統計誤差
 - Belle実験全体でより多くのB中間子を生成できた
 - NeuroBayes法でシグナルの保持率を高く維持したまま バックグラウンドと分離出が可能であった
- 系統誤差
 - 前回のBelleの結果と比較し、
 - より一層のBイベントのバックグラウンドの研究によるものである。

¹The luminosity is described as $\mathcal{L} = N_+ N_- f / 4\pi \sigma_x^* \sigma_y^*$, where N_{\pm} is the number of particles e^{\pm} per bunch, f is the frequency of collision, and $\sigma_{x,y}^*$ is the beam size at IP in x or y direction.

SVD (Silicon Vertex Detector)

 $p\beta * \sin(\theta)^{3/2}$ (GeV/c)

 $p\beta * \sin(\theta)^{5/2}$ (GeV/c)

CDC (Central Drift Chamber)

- Anode: 50 layers including 18 stereo wires (30µm-diameter gold-plated tungsten)
- r from beam axis = 8.3-86.3 cm
- -77 < z < 160 cm (17° < θ < 150°)

ACC (Aerogel Cherenkov Counter) $\left(\frac{m}{p}\right)^{-1}$

TOF (Time-of-Flight Counter)

Forward

122.0

R=117.5

R = 122.0

R=117.5

182.5 190.5

-PMT

- r from beam axis = 120 cm
- Length = 3-m long, N_{scintillators} = 128

TOF 4.0 t x 6.0 W x 255.0 L

TSC 0.5 t x 12.0 W x 263.0 L

• $\sigma_{\rm T} = 100 \, {\rm psec}$

I.P (Z=0)

282.0 287.0

R=120.05

R=117.5

 $t = \frac{l}{c\beta} = \frac{l}{c}\sqrt{1 + \frac{l}{c}}$

Backward

- 80.5

- 72.5

1.0

4.0

1.5

- 91.5

-PMT

Light guide

• K/ π separation up to 1.2 GeV

飛行時間分解能

飛行距離、シンチレーションの早さ、 光量、PMT性能などが大切な要素。

ECL (Electromagnetic Calorimeter)

• PINフォトダイオードを用い、電磁シャワーを検出。

2.0 m

エネルギー分解能は、~1.3%/VE。位置分解能は~0.5 cm/VE。(E in GeV)

(回路ノイズ、シャワーの漏れ、較正誤差などが効いてくる。)

Backward Endcap Colorimeter Barrel Calorimeter Barrel Calorimete

1.0 m

2.0 m

3.0 m

0.0 m

1.0 m

BELLE CSI ELECTROMAGNETIC CALORIMETER

30

unit (mm)

KLM (K_L/Muon Detector)

- 鉄とRPC (Registive Plate Chamber)のサンドイッチ構造(14層)。
- K_L(シャワーを発生)とMuon(長い飛跡)の検出を行う。

KSFW

• Fox-Wolfram (FW) moment (P₁ = *I*-th Legendre polynomial):

$$H_l \equiv \sum_{i,j} |\vec{p}_i| |\vec{p}_j| P_l(\cos \theta_{ij}),$$

• Fisher discriminant of Super FW (SFW):

$$\text{SFW} \equiv \sum_{l=2,4} \alpha_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right) + \sum_{l=1}^4 \beta_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right)$$

Separate signal B and the other B.

• Kakuno-SFW:

$$\text{KSFW} \equiv \sum_{l=0}^{4} R_l^{\text{so}} + \sum_{l=0}^{4} R_l^{\text{oo}} + \gamma \sum_{n=1}^{N_t} |p_{t,n}|,$$

Missing momentum, Charges of tracks, ... Fisher coefficients are determined for seven missing mass regions.

Flavor tagging

- B-flavor taggingは、下記の情報を用いて行う。
- (1) high-momentum leptons from $B^0 \to X \ell^+ v$ decays,
- (2) kaons, since the majority of them originate from $B^0 \to K^+ X$ decays through the cascade transition $\overline{b} \to \overline{c} \to \overline{s}$,
- (3) intermediate momentum leptons from $\bar{b} \rightarrow \bar{s}$ 事象ごとに、(1)から(2)に $\bar{c} \rightarrow \bar{s}\ell^- \bar{\nu}$ decays, 関連した約50の変数を得て、
- (4) high momentum pions coming from $B^0 \rightarrow 3$ 次元Likelihood法を用いる。 $D^{(*)}\pi^+X$ decays,
- (5) slow pions from $B^0 \to D^{*-}X, D^{*-} \to \overline{D}^0 \pi^-$ Taggingの精度r_{tag}は、 decays, and qq背景事象分離に用いる。
- (6) \overline{A} baryons from the cascade decay $\overline{b} \to \overline{c} \to \overline{s}$.

NeuroBayes Inputs

$$LR_{KSFW}$$

$|\cos\theta_{thr}|$

• $|\cos\theta_{thr}|$: the absolute value of the cosine of the angle in CM frame between the thrust axis of the B decay and the one of the detected remains.

$\text{cos}\theta^{\text{K}}{}_{\text{D}}$

• $\cos\theta_{D}^{K}$: the cosine of the angle between the daughter K direction and the opposite direction to B in the D-rest frame.

Δz

 Δz : the distance of the reconstructed and tag-side B vertices.

Distance of D K*

 Distance of D K* : the distance of closest approach between the K* track and the trajectory of the D candidate.

|qr|

• |*qr*| : the absolute value of the flavor tagging information *qr*, where *q* indicates the bflavor and *r* indicates the quality of tagging.

$|\cos\theta_{\rm B}|$

 |cosθ_B| : the absolute value of cosine of the angle between the Bflight and the beam axis.

$\text{cos}\theta^{\text{D}}{}_{\text{B}}$

 cosθ^D_B : the cosine of the angle between the D direction and the opposite direction to Y(4S) in the Brest frame.

ΔQ

• ΔQ : the charge difference between the sum of the charges of particles in the D hemisphere and the one on the opposite hemisphere, excluding the particles used for the reconstruction of B meson.

$$\cos\theta^{K}_{K^{*}}$$

- cosθ^K_{K*} : the cosine of the angle between the K direction and the opposite direction to K* in the B-rest frame.
 - (I used this with Cut base in previous analysis)

シグナルの ΔE PDF

・二つのガウス関数の和を使用

バックグラウンドの ΔE PDF

Comparison with other analysis

	Br(B ⁰ →D ⁰ K ^{*0}) (* 10 ⁻⁵)
This analysis	$3.91 \pm 0.47 \begin{array}{c} + 0.16 \\ - 0.23 \end{array}$
My previous analysis (65th JPS 23pBA9) (Cut based on KSFW, cut on $\cos\theta^{K}_{K^{*}}$)	$3.86 \pm 0.64 \begin{array}{c} + 0.18 \\ - 0.22 \end{array}$
Belle @ 85M BB (PRL 90, 141802 (2003))	4.8 $^{+1.1}_{-1.0}$ ± 0.5 not only D \rightarrow K π ,
BaBar @ 226M BB (arXiv:0904.2112v2 [hep-ex] (2009))	4.0 ± 0.7 ± 0.3 but also D \rightarrow Kππ ⁰ , Kππ ³ are included
PDG	4.2 ± 0.6

- Most precise measurement.
 - Stat. err.
 - Large statistics (772 * 10⁶ BB Data)
 - Reduction of signal loss for using neural net.
 - Syst. err.
 - BB backgrounds study

シグナルの導出

・シグナル数の導出にAE,NBの2次元をフィットして行う

ΔE,NBに相関がほぼ無いため、フィットする確率密度
 関数は1次元のものを掛け合わせて作成する

確率密度関数

- ΔEの確率密度関数
 - シグナル
 - ・ シグナルモンテカルロより
 求めた二つのガウシアンの和
 - Bイベント
 - D⁰ρ⁰, D⁰π⁺, D⁰K⁺, D^{*0}π⁺, D^{*0}K⁺
 モンテカルロ生成し、それぞれ 対応する確率密度関数を得る、 イベント数はPDGから算出し、 形状、大きさを固定
 - その他 指数関数
 - コンテニウム
 - 直線

- NBの確率密度関数
 シグナル
 - ・ シグナルモンテカルロ

 M_{bc}サイドバンド(M_{bc}[5.23, 5.27] GeV)からBイベントの寄 与を差し引いたもの