

B-πタギング法を用いた Y(5S) 共鳴からのCP 非保存角φ₁ の測定

<u>佐藤 優太郎、山本均 and the Belle collaboration</u> 東北大理 2011/09/16 JPS @ 弘前大学 16pSD-5

1

- ・イントロ
 - KEKB / Belle
 - Y(5S) 共鳴
 - *B*-πタギング法
- 解析
 - 手順
 - モード
 - イベント選択
 - 背景事象
 - フィット関数
- 結果
- まとめ

KEKB / Belle

<u>KEKB 加速器 (1999-2010)</u>

- 非対称エネルギー (βγ = 0.425)
- 重心系エネルギー
 - 主に Y(4S) 共鳴
- ・ 世界最高のルミノシティ
 - (積分):>1000 fb⁻¹ - (ピーク): $2.11 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

B-πタギング法(1/2)

<u>アイディア</u>

- 中性B中間子と荷電B中間子がペアで生成されるモードでは、 π^{\pm} の電荷の符号からフレーバータグをすることができる。
 - $Y(5S) \rightarrow B^{(*)} B^{(*)} \pi^{\pm} (+\pi^0)$
- 一方のBは明示的には再構成しない。

B-πタギング法(2/2)

崩壊点間距離(∆z)を測定する必要がない。
 – イベント数だけで、CPの破れが見える。

 Mixing-induced Direct
 $\overline{B^0} \rightarrow f_{CP}$ $B^0 \rightarrow f_{CP}$ CPV
 CPV
 GPV
 崩壊時間差∆t [ps]

 $A_{BB\pi} \equiv \frac{N_{BB\pi^-} - N_{BB\pi^+}}{N_{BB\pi^-} + N_{BB\pi^+}} = \frac{S \cdot x + A}{1 + x^2}$ Mixing parameter

- Vertex が測定できないモードにも(原理的には)応用可能

(例) $B \rightarrow \pi^0 \pi^0$

- Y(5S)の解析:SとAに制限 ←

• Y(4S)の解析とは異なる系統誤差を持つ。

B-πタギングを用いた解析は Y(4S)の解析と独立な解析であり、 将来、Y(4S)の測定と異なる測定に応用できる可能性あり。

 $B_0 \rightarrow$

1.2

 $B_0 \rightarrow$

解析手順

解析モード

- 1. <u>χ_d (時間積分した混合確率) 測定</u>
- B-πタギングが正しくタギングできていることを確認。
- Flavor-specific mode : $D^{*-} \pi^+$, $J/\psi K^{*0}$
 - sub-decay : $D^{*} \rightarrow \overline{D}^{0} \pi^{-}, \overline{D}^{0} \rightarrow K^{+} \pi^{-},$

 $: K^{*0} \rightarrow K^+ \pi^-$

→ $\overline{B}^0 B^+ \pi^-$ 再構成したB と π^\pm の組み合わせ

 $Y(5S) \rightarrow B^0 B^- \pi^+$

 $B^{0}-\pi^{+} \text{ (unmixed)} \rightarrow N_{BB\pi^{+}} \cdot (1-\chi_{d})$ $B^{0}-\pi^{-}(\text{ mixed }) \rightarrow N_{BB\pi^{+}} \cdot \chi_{d}$ $\overline{B}^{0}-\pi^{-}(\text{ unmixed }) \rightarrow N_{BB\pi^{-}} \cdot (1-\chi_{d})$ $\overline{B}^{0}-\pi^{+}(\text{ mixed }) \rightarrow N_{BB\pi^{-}} \cdot \chi_{d}$ (※ フィットでは $N_{BB\pi^{+}} = N_{BB\pi^{-}} \mathcal{E}$ 仮定)

- 2. Direct CPV 測定
- B-πタギングによる非対称がないことを確認。
- Charged mode : $J/\psi K^+$ - sub-decay : $J/\psi \rightarrow e^+ e^-$ or $\mu^+ \mu^-$
- 3. <u>sin2¢</u><u>1</u> 測定
- *CP*-eigenstate mode : $J/\psi K_S$
 - sub-decay : : $J/\psi \rightarrow e^+ e^-$ or $\mu^+ \mu^-$, $K_S \rightarrow \pi^+ \pi^-$

イベント選択

荷電トラック

- ・ 衝突点付近から出ていること。 (K_S からの π^{\pm} は除く)
- 粒子識別の情報でK[±], π[±], e[±],
 μ[±]を識別。
- Direct π :
 - $B_{\rm rec}$ のvertexに近いこと。
 - Ks からのπ[±]を除去。

<u>質量</u>

• J/ψ : $|M(ll) - M_{J/\psi}| < 30 \text{ MeV}$ (-100 MeV for e^+e^- ,

including γ within 0.05 rad)

・ K_S : $|M(\pi^+\pi^-) - M_{K^0}| < 30 \text{ MeV}$ K_S のvertex と運動量の方向、 π^\pm のimpact parameter を用いて選択。

•	K^{*0} : $ M(K^{+}\pi^{-}) - M_{K^{*0}} < 50 \text{ MeV}$
•	\overline{D}^{0} : $ M(K^{+}\pi^{-}) - M_{D^{0}} < 10 \text{ MeV}$
•	D^{*-} : $ \Delta M - (M_{D^{*-}} - M_{D^0}) < 2 \text{ MeV}$
•	\boldsymbol{B} : $ \mathbf{M}_{B_{\mathrm{rec}}} - \mathbf{M}_{B} $ < 20 MeV
•	それぞれの粒子に対して、キネマティッ クフィット(崩壊点、質量を固定)を適用。
	A いる的场点のの回足。
ビ	ームコンストレイント質量
•	低運動量のBを選択
	• M _{bc} : 5.348 ~ 5.440 GeV
<u>CO</u>	<u>ntinuum 抑制</u>
•	イベントの形状を利用
	• R 2 < 0.5 for J/ψ
	 R2 < 0.5 for J/ψ R2 < 0.4 for D*-

• $|\cos\theta^*_{\text{thrust}}| < 0.75 \text{ for } D^{*-}$

背景事象

- MCを用いて背景事象を確認した。
- 1. Combinatorial B.G.
 - 主に、正しく再構成された $B \ge Y(5S)$ 以外からの π^{\pm} との組み合わせ

フィット関数

→ Extended unbinned maximum likelihood fit を行う。

χ_d 測定

Flavor-specific mode $\mathcal{O}8 \mathcal{O}(=2 \text{ modes} \times 4 \text{ comb.}) \mathcal{O}$ ロットを同時フィット。

χ_d 測定

• $\chi_d = 0.19 \pm 0.09 (\text{stat})$ (PDG2010 value : $\chi_d = 0.1872 \pm 0.0024$)

→ 統計の範囲内で、正しくタギングできていることを確認。

Direct CPV 測定

非対称度A_{BB}を得る。

• $A_{BB\pi} = 0.02 \pm 0.17$ (stat)

→統計の範囲内で、B-πタギングによる非対称がないことを確認。

sin2ø₁測定

$sin2\phi_l$ の系統誤差

・ 考慮した $\sin 2\phi_1$ に対する系統誤差

Source	$\sigma_{\sin 2\phi_1}$
Fit parameterization	0.055
Pion detection asymmetry	0.007
Mixing parameter x	0.001
Mixing parameter y	0.012
$BB\pi$ and $BB\pi\pi$	0.005
Total	0.057

主な系統誤差はMCによって固定したフィットパラメータによるもの。
 – Data-driven で行う場合、これは、1/√(Luminosity)で減る。

まとめ

- $B-\pi$ タギングを用いて、Y(5S) 共鳴から*CP* 対称性の破れの角 ϕ_1 を測定した。
- B-πタギングはπ[±]の電荷の符号からフレーバータギングをする。
 - イベント数の非対称度からCP の破れが見える。
 - Y(4S)の解析とは異なる系統誤差を持つ。
 - Vertex の測定ができないモードにも応用可能。
- 本解析では、Belle で取得した Y(5S) データ 121 fb⁻¹ を用いて、 sin2 \u03c6₁ = 0.57 ± 0.58(stat) ± 0.06(syst)
 と、測定された。

Back up

粒子識別

$$Prob(i:j) = \frac{L(i)}{L(i) + L(j)}$$
$$L = L^{ACC} \times L^{TOF} \times L^{CDC}$$

CDC

ACC

Direct pion candidates

カットの最適化

<u>Brec</u>に対する選択条件の最適化

- J/ψ mass window, lepton-ID, K-ID, continuum suppression
 - Y(4S) データ(~107 fb⁻¹) を使用。
 - Y(5S)とY(4S)のS/Nの違いを補正するため、重み付きの Significanceを定義。

<u>B_{miss}に対する選択条件の最適化</u>

• B_{rec} mass window, B_{rec} momentum, π -ID - 6 倍の量のMCを使用。

-2∆ln(Likelihood) 分布

データとMCの比較

• $B^{\pm} \rightarrow J/\psi K^{\pm}$

Toy MC test

Fraction of $B^*\overline{B}\pi + B\overline{B}^*\pi = \begin{cases} 0.31 \pm 0.15 & (B \to J/\psi K_s) \\ 0.74 \pm 0.08 & (B \to J/\psi K^{*0} \text{ and } D^{*-}\pi^+) \end{cases}$

- PDF shape : $J/\psi K_S$
- Peak fraction : $J/\psi K^{*0}$ and $D^{*-}\pi^+$
- $A_{BB\pi}$: PDG value
- # of events : $J/\psi K_S$ (fluctuated by the Poisson distribution)

 \rightarrow 3.6%(1.8% \times 2)

系統誤差

<u>π[±] 検出効率の非対称度</u>

$$rac{arepsilon^{\pi^+}}{arepsilon^{\pi^-}} = rac{N_{D^{*+}}/N_{D^0}}{N_{D^{*-}}/N_{\overline{D}^0}} \qquad D^{*+} o [K^-\pi^+]_{D^0}\pi^+_{slow}$$

 D^{0} からの K^{-} , π^{+} はキャンセルして、slow π^{+} の検出効率が求まる。 > Y(4S)データ 107 fb⁻¹を使用して、 $\epsilon^{\pi+}/\epsilon^{\pi-}= 1.009 \pm 0.007$ を得た。

<u>Mixing parameter y</u>

$$A_{BB\pi^{\pm}} = \frac{x}{1+x^2} (-\eta_{CP} \cdot \sin 2\phi_1) \cdot \frac{1-y^2}{1+y \cdot \eta_{CP} \cdot \cos 2\phi_1}$$

• 1σ upper limit : 0.246 [B. Aubert et al. (BABAR Collaboration) Phys.Rev. D70,012007(2004)]