

ILC実験におけるリトルヒッグス 模型に関する測定精度の評価

JPS 2011.9.17 **東北大学加藤恵里子** 浅野雅樹、藤井恵介、 松本重貴、田窪洋介、山本均

小さな階層性問題

新物理が現れるエネルギースケールは2つ予言されている。 <<u>Fine tuning</u>>

➡ リトルヒッグス模型が提唱された。

リトルヒッグス模型

<リトルヒッグス機構> グローバル対称性: SU(5) f ~ 1 TeV SO(5) v ~ <h> 部分群: [SU(2)_L × U(1)_Y]² SU(2)_L × U(1)_Y → U(1)_Y

小さな階層性問題を回避できる

Tパリティー課したリトレストヒッグス A_H:暗黒 リトルヒッグス粒子 標準模型粒子 物質候補 u $m_{W_{H}} \sim m_{Z_{H}} \sim g f$ charm top photo T-parity Ζ b d_ b S S_ d Zн bottom strange $m_{A_u} \sim g' f / \sqrt{5}$ W V_{τ} V_µ nuon **V**_e $m_u \sim m_d \sim \sqrt{2}k_q f$ W boson tau g T U muon $m_e \sim m_v \sim \sqrt{2}k_l f$ Triple **T**_ T_+

<<mark>模型パラメータ></mark> LHTの予言する重いゲージボゾン,重いレプトンは2パラメータで表される。 f(VEV): グローバル対称性の破れのエネルギースケール K : レプトン湯川結合

たのか、を知るのにおいて重要なパラメータ。

研究目的

<ILCの測定精度の評価> 目的1:模型パラメータの抽出(f&kappa) 目的2:質量スペクトラムの完成と模型パラメータとの 一貫性をみる。(リトルヒッグス機構検証) 発見された粒子たちがLHTであるという強い証拠

ILC (国際リニアコライダー)計画

<電子陽電子衝突型線形加速器>

全長~31km

重心系エネルギー:Vs=500GeV~1TeV

積分ルミノシティ(4年間)=500fb⁻¹

電子偏極: 0%~±80%以上

<測定器>

ジェットエネルギー分解能 : ΔΕ/Ε=<mark>30</mark>%/VE(GeV) 運動量分解能:ΔP_t/P_t²=<mark>5 × 10⁻⁵(GeV/c)⁻¹</mark>

模型パラメータの選択

レプトンとゲージセクターは2つの模型パラメータで表される。

解析モード

解析手順

<<u>賃量、パラメータ抽出></u>
 T-パリティ♥新粒子(T-odd)が2つ生成される。
 ●新粒子は標準模型(SM)粒子とLHT粒子に崩壊する。
 ■SM 粒子のエネルギーのエッジを見ることで、LHT粒子の質量を抽出。
 ■LHT 粒子の質量より、模型パラメータを抽出。

е_не_н @1TeV

<目的>

e_н質量を測定し、パラメータκ(レプトン湯川結合)を抽出する。 質量生成メカニズムを知るのにおいて重要。

事象選定と再構成

<信号事象選定、再構成>

- 1.孤立電子が2個検出され、その電荷が異符号のものを選択。
- 2. 残り全てを強制的に4ジェットとして再構成する。
- 3.下のχ²_Hを最小とする組み合わせをとる。

$$\chi_H^2 = \left(\frac{M_{H1} - M_H}{\sigma_{M_H}}\right)^2 + \left(\frac{M_{H2} - M_H}{\sigma_{M_H}}\right)^2$$

- M_H-40<ヒッグス質量<M_H+30(GeV)
- •横運動量損失>30(GeV)

 $M_{H} = 134.0(GeV)$

e

e

 $Z_{H_{\mathcal{T}}}$

 Z_H

 e_{H}

 Z_H A_H

 e_{H}

$$BG: r_{H}T_{H}, tt,ttZ,tth evWZ,zevWW,ZZZ$$

<質量、パラメータの測定精度>

 ・質量解、二解なし。(もう一つの解は十分小さい。)

 質量 : e_H:412.8 ±1.7(GeV) Z_H:371.2 ±1.5(GeV)

 パラメータ : f=579.6±3.0(GeV) κ=0.5000±4×10⁻⁴

 真値 : f=580(GeV), κ=0.5

 重い電子の質量およびパラメータ抽出ができた。

v_Hv_H@1TeV

<目的>

v_H 質量、パラメータ抽出

まとめ

- 1TeV,500fb⁻¹のILCの場合の、シミュレーションデータを用いて、 リトルヒッグス粒子の質量とパラメータの測定精度の評価 を行った。
- ILCで、高い精度でLHT粒子の質量及び、パラメータ測定する ことができ、質量、パラメータの一貫性を確認できる結果が 得られた。

粒子	質量	測定精度	パラメータ	真値	測定精度
A _H	81.9(GeV)	1.3%	f	580(GeV)	0.16%
W _H	369(GeV)	0.20%	К	0.5	0.01%
Z _H	368(GeV)	0.56%			
e _H	410(GeV)	0.46%			
V _H	400(GeV)	0.10%			