

b→s l+t 遷移における レプトン前後非対称性の測定

東北大 佐藤 優太郎 B workshop @ 磐梯熱海

- ・イントロ
 - b →s 遷移
 - Wilson係数
 - Semi-inclusive アプローチ
 - レプトン前後非対称性
 - 現在の測定結果
- 解析
 - シグナルMC
 - M_{bc} and ΔE 分布
 - Best Candidate Selection
 - B.G. study
- ・ まとめ・プラン

b→s 遷移

- 標準理論において、tree level では禁止。
- ループで新粒子が回る可能性あり。
 - →新物理に感度がある。

<u>b→s l+t 遷移</u>

- Penguin or Box diagrams
- 稀崩壊(崩壊分岐比~10-6)
- 低B.G.

(b →s γについては次のトーク[斉藤]で)

Flavor Changing Neutral Current

Wilson 係数

Operator Product Expansion

・ ハミルトニアンをオペレータ (O_i) とWilson 係数 (C_i) を使って、書き表す。 $H \sim \sum C_i O_i$

- b→sl+l 遷移は3つのWilson 係数(C₇, C₉, C₁₀)に感度がある。
- Wilson 係数は標準理論では精度よく計算されており、新物理はそのずれとして観測される。

Semi-inclusive アプローチ

解析手法として、3つの方法(アプローチ)がある。

Exclusive : $B \rightarrow a + b + c$

• 終状態のすべての粒子を観測して解析する。

 $- B \rightarrow K^* l^+ l^-, B \rightarrow K l^+ l^-$

Inclusive : $B \rightarrow a + X$

- 終状態の一部の粒子(a)のみを観測し、解析する。
 - 2 個のレプトンのみを観測してb→s l+l⁻ 崩壊を解析することは、 semi-leptonic B 崩壊 (Br~20%) があるため、難しい。

Semi-inclusive

Exclusive の足し合わせ。

 $-B \rightarrow X_{s} l^{+}l^{-} (X_{s} = K, K\pi, K2\pi,)$

- Inclusive に対して、B.G. 分離に有効な変数(*M_{bc}*, *ΔE*) が使える。
- Exclusive に対して、ハドロン化による不定性が少ない。

レプトン前後非対称性 (A_{FB})

• $\cos\theta$: レプトン対の静止系において、 $B(B^0 \text{ or } B^+)$ とl⁻の間の角。 Forward event Backward event

b→s l+t 遷移のレプトン前後非対称性をSemi-inclusive アプローチ で測定することで標準理論の検証(=新物理の探索)を行う。

b→s l+t の測定変数とその状況

現在のA_{FB}の測定状況

再構成するモード

• 合計36 モードを足し合わせて、semi-inclusive 解析を行う。

 $[1 \text{ O} \mathcal{O} K(K^{\pm} \text{ or } K_S)] + [最大4 \text{ O} まで \mathcal{O} \pi(\pi^0 は 最大1 \text{ O})]$

1 body :
$$K$$
, K_S
2 body : $K\pi$, $K_S\pi$, $K\pi^0$, $K_S\pi^0$
3 body : $K2\pi$, $K_S2\pi$, $K\pi\pi^0$, $K_S\pi\pi^0$
4 body : $K3\pi$, $K_S3\pi$, $K2\pi\pi^0$, $K_S2\pi\pi^0$
5 body : $K4\pi$, $K_S4\pi$, $K3\pi\pi^0$, $K_S3\pi\pi^0$

Signal MC 生成

- 3つのMC サンプルを測定されている崩壊分岐比に合わせて、 混ぜて、生成している。
 - $B \rightarrow K l^+l^-: 12.3\%$
- 2. $B \rightarrow K^* l^+ l^- : 29.5\%$
- 3. $B \rightarrow \text{non resonant } X_s l^+l^- : 58.2\%$

- 崩壞分岐比@HFAG2010
- Br $[B \rightarrow Kl^+l^-] : 0.45 \times 10^{-6}$
- Br $[B \rightarrow K^* l^+ l^-]$: 1.08 × 10⁻⁶
- Br $[B \rightarrow sl^+l^- \text{(total)}] : 3.66 \times 10^{-6}$

- X_c / K^{*} 遷移值: 1.1 GeV
- 合計約600万イベント生成。

X_sの崩壊のうち、62.0%をカバー。 (K_Lも含めると、82.4%)

粒子選択

中山さん(Semi-inclusive, X_s l⁺l⁻ 崩壊分岐比測定)を参考にしている。 (B.G. study の後で最適化を行う予定)

<u>荷電粒子</u>

- | dr | < 1.0 cm
- | dz | < 5.0 cm

<u>e</u>±

- $p^{lab} > 0.4 \text{ GeV}$
- *e*-ID >0.8

μ^{\pm}

- $p^{lab} > 0.8 \text{ GeV}$
- μ -ID > 0.97
 - e[±]候補ではないこと。

<u>K</u>±

• *K*-ID(K/ π) > 0.6 - e^{\pm}, μ^{\pm} 候補ではないこと。 $\underline{\pi^{\pm}}$

e[±], μ[±], K[±] 候補ではないこと。

<u>**K**</u><u>s</u>

- FindK_sクラスのgoodK_sを要求。 <u>*ⁿ*</u>
- $E^{lab}_{\gamma} > 50 \text{ MeV}$
- $E^{lab}_{\ \pi 0} > 400 \text{ MeV}$
- $|M(\gamma\gamma) M(\pi^0)| < 10 \text{ MeV}$

イベント選択

レプトン対が生成されるB.G.イベントを除去 <u>チャーモニウムからのB.G.の抑制</u>

- •-0.40 GeV < $M(ee(\gamma)) M(J/\psi) < 0.15$ GeV
- •-0.25 GeV < $M(\mu\mu) M(J/\psi) < 0.10$ GeV
- •-0.25 GeV < $M(ee(\gamma)) M(\psi(2S)) < 0.10$ GeV
- •-0.15 GeV < $M(\mu\mu) M(\psi(2S)) < 0.10$ GeV
- <u>γ conversion / π⁰ dalitz 崩壊の抑制</u>
- • $M(l^+l^-) > 0.2 \text{ GeV}$
- レプトン対のz方向の最小距離
- $|\Delta z_{l+l-}| < 150 \ \mu m$
- $\underline{X_s} \underline{l^+ l^- \text{ vertex cut}}$
- χ^2_{vtx} / NDF < 10.0
- <u>X。質量</u>
- • $M_{Xs} < 2.0 \text{ GeV}$

Br[$J/\psi \rightarrow l^+l^-$] ~ 5.9% Br[$\psi(2S) \rightarrow l^+l^-$] ~ 0.8% Br[$\pi^0 \rightarrow e^+e^-\gamma$] ~ 1.2% Br[$B \rightarrow l\nu_l X$] ~ 11.0%

Signal box window

- 5.27 GeV $< M_{bc} < 5.29$ GeV
- $-0.10 \text{ GeV} < \Delta E < 0.05 \text{ GeV for } X_s e^+e^-$
- $-0.05 \text{ GeV} < \Delta E < 0.05 \text{ GeV}$ for $X_s \mu^+ \mu$

M_{bc} と△E 分布 @ signal MC

イベント選択後のM_{bc}, ΔE 分布を示す。

- $X_{s}\mu^{+}\mu^{-}$ にくらべて、 $X_{s}e^{+}e^{-}$ の ΔE はテールが大きい。

	$X_s e^+e^-$	$X_{s} \mu^{\scriptscriptstyle +} \mu$
Efficiency	5.6%	5.3%
Purity	65.7%	74.4%

※ Efficiency の分母は生成した全イベント数。

<u>×10³</u>

<u>×10³</u>

20 $X_{c} \mu^{+} \mu$

 $\mathbf{z}_{\mathbf{x}} = \mathbf{X}_{\mathbf{x}} \mathbf{e}^{+} \mathbf{e}^{-}$

25

15 10

25

15

10

1 イベント当たりのB の候補数

• ほとんどのイベントでBの候補数は5以下。

→1つのイベントに複数のBの候補がある場合、もっとも本物らしいBの候補を1つ選択する(Best Candidate Selection)。

Best Candidate Selection

効率の良いBest Candidate Selection の方法を探した。 <u>Best Candidate Selection する時の領域</u>

<u>Best Candidate Selection の方法</u>

- Likelihood の積で、最も大きい値を持つイベントを選択
 - $-\Delta E$
 - $X_s l^+ l^- \mathcal{O}$ vertex fit $\mathcal{O} \chi_{vtx}^2$

PDF for Best Candidate Selection

• △E は4 つのカテゴリーに分けて、PDF を作成。

• χ_{vtx}^2 は5 つのカテゴリーに分けて、PDF を作成。

Best Candidate Selection の結果

<u>Best Candidate Selection 前後のM_{bc} 分布</u>

→ 正しく再構成されたイベントを(93.0/94.6) % 保持しつつ、 正しく再構成されなかったイベントを(57.7/55.6) % 低減。

B.G. 抑制

Semi-leptonic B 崩壊からのB.G を抑制するための、変数を用意した。

2 つのニュートリノ(missing tracks) が
 生成されることを利用。

B.G. 抑制

- Continuum B.G.(*ee* →*qq*, *q=u,d,s,c*) などの他のB.G. も抑制する必要 がある。
- これらの変数を組み合わせて、効果的にB.G.を抑制していく。
 ニューラルネットワークを使う予定。

まとめ・プラン

- $b \rightarrow s l^+ l^-$ 遷移は新物理(C_7, C_9, C_{10})に感度をもつ。
- *b→sl+t*におけるレプトン前後非対称性をsemi-inclusive アプローチ で測定し、標準理論の検証(=新物理の探索)を行っている。

- 全て(36)のモードを再構成して、Best Candidate Selection を行った。
 Likelihood の積で、最も大きい値を持つイベントを選択
 - ΔE
 - $X_s l^+ l^- \mathcal{O}$ vertex fit $\mathcal{O} \chi_{vtx}^2$
- B.G. を抑制するための変数を用意した。

→ ニューラルネットワークを用いて、効率良くB.G. を抑制していく。

LHCb

LHCb Integrated Luminosity at 3.5 TeV in 2011

Integrated LHCb Efficiency breakdown in 2011

P.23

Wilson Coefficient

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

χ^2 distribution

Figure 32.2: The 'reduced' χ^2 , equal to χ^2/n , for *n* degrees of freedom. The curves show as a function of *n* the χ^2/n that corresponds to a given *p*-value.

	$X_s \ e^+e^-$	$X_{s}~\mu^{\scriptscriptstyle +}\mu$		$X_s e^+e^-$	$X_{s}~\mu^{\!\scriptscriptstyle +}\mu$
Efficiency	5.6%	5.3%	Efficiency	5.2%	5.1%
	(7.5%)	(6.5%)		(5.9%)	(5.6%)
Purity	65.7%	74.4%	Purity	80.8%	86.1%
·	(88.3%)	(91.0%)		(93.0%)	(94.8%)