

$B \rightarrow DK, D \rightarrow K_s K\pi$ 崩壊によるCP非保存 角 ϕ_3 の測定に向けた $D^* \rightarrow D\pi, D \rightarrow K_s K\pi$ 崩壊のDalitz plot解析

2011年 12月 6日 東北大学 **鈴木 善明** and Belle collaboration B workshop 2011@磐梯熱海

目次

- イントロダクション
 - Belle実験
 - *ϕ*₃の測定
- コントロールサンプル $B^- \rightarrow D\pi^-$, $D \rightarrow K_s K^{\mp} \pi^{\pm}$ の解析
- $D^{*\pm} \rightarrow D\pi^{\pm}, D \rightarrow K_s K^{\mp} \pi^{\pm}$ 崩壊の研究
 - D の選定
 - Dalitz plot のフィットの手法
 - フィッターの検証
- 今後
- まとめ

- 積分ルミノシティ: 1014 fb⁻¹ (Y(4S): 711 fb⁻¹)
- SuperKEKB, BelleIIへのアップグレードのため2010年6月 に運転終了。

$CP非保存角\phi_3$

 ϕ_1, ϕ_2 は精度よく測定されており、 ϕ_3 の値が新物理の 有無(三角形が閉じるか否か)を決める。

 $\phi_{1} = 21.15^{\circ} + 0.90^{\circ} - 0.88^{\circ}$ $\phi_{2} = 89.0^{\circ} + 4.4^{\circ} - 4.2^{\circ}$ $\phi_{3} = 68^{\circ} + 13^{\circ} - 14^{\circ}$ $\phi_{4} \leftarrow CKMfitter ICHEP2010$

 ϕ_1, ϕ_2 : CKMfitter, ICHEP2010 ϕ_3 : CKMfitter, EPS2011 ϕ_{3} の測定精度の向上が課題 $\phi_{3} \equiv \arg\left(rac{V_{ud}V_{ub}^{*}}{-V_{cd}V_{cb}^{*}}
ight)$ $\sim -\arg\left(V_{ub}
ight)$

*B→DK*崩壊

 $B^- \ge B^+$ の崩壊分岐比を測定することで δ, ϕ_3 が求まる。

本解析では、まだ測定されたことのない D →KsKπ 崩壊を用いる。

- ・ 直近までの φ₃の最高精度の測定は D → K_Sππ の Dalitz plot 解析。

特に最大の共鳴である*D→K*+K-と D→K*-K*+は同じ過程で崩壊し、 同じパラメータが寄与するので、 未知のパラメータが少ない。

変形GW法

B+, B⁻の分岐比

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{-} \pi^{+} \quad A[B^{-} \rightarrow K^{-} (K^{*+} K^{-})_{D}] = |A_{B} A_{D}| \left[1 + \mathbf{r}_{B} \mathbf{r}_{D} e^{i(\delta_{B} + \delta_{D} - \phi_{3})} \right]$ $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \pi^{-} \quad A[B^{-} \rightarrow K^{-} (K^{*-} K^{+})_{D}] = |A_{B} A_{D}| e^{i\delta_{D}} \left[\mathbf{r}_{D} + \mathbf{r}_{B} e^{i(\delta_{B} - \delta_{D} - \phi_{3})} \right]$

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{-} \pi^{+} \quad A[B^{+} \rightarrow K^{+} (K^{*-} K^{+})_{D}] = |A_{B} A_{D}| \left[1 + \frac{r_{B}}{r_{D}} e^{i(\delta_{B} + \delta_{D} + \phi_{3})} \right]$

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \pi^{-} \quad A[B^{+} \rightarrow K^{+} (K^{*+} K^{-})_{D}] = |A_{B} A_{D}| e^{i \delta_{D}} \left[r_{D} + \frac{r_{B}}{r_{B}} e^{i (\delta_{B} - \delta_{D} + \phi_{3})} \right]$

$$\mathbf{r}_{B} = \left| \frac{\bar{A}_{B}}{A_{B}} \right| = \left| \frac{A(B^{-} \to \bar{D}^{0}K^{-})}{A(B^{-} \to D^{0}K^{-})} \right|, \quad r_{D} = \left| \frac{\bar{A}_{D}}{A_{D}} \right| = \left| \frac{A(\bar{D}^{0} \to K^{*+}K^{-})}{A(D^{0} \to K^{*+}K^{-})} \right|$$

 r_D は他の測定で精度よく測定されている(既知数)とする。 \rightarrow 未知数は δ_D , δ_B , r_B , ϕ_3 の4つ。分岐比の4式を連立すれば解ける。 この崩壊モードのみで ϕ_3 の測定が可能

$$\cos\phi_3 = \frac{(R_1 + R_3 - 2)^2 - (R_2 + R_4 - 2r_D^2)^2}{4[(R_1 - 1)(R_3 - 1) - (R_2 - r_D^2)(R_4 - r_D^2)]}$$

$$R_1 = \left[\frac{A[B^- \to K^-(K^{*+}K^-)_D]}{A_B A_D}\right]^2, \ R_2 = \cdots$$

Dalitz Plot

Dalitz Plot

コントロールサンプル $B^- \rightarrow D\pi^-, D \rightarrow K_s K^{\mp} \pi^{\pm}$ の解析 Y(4S)の全データ(711 fb⁻¹)を使用

Control sample : $B \rightarrow D\pi$, $D \rightarrow KsK\pi$

$D^{*\pm} \rightarrow D\pi^{\pm}, D \rightarrow K_s K^{\mp} \pi^{\pm}$ 崩壊の研究

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

 $B^{-} \rightarrow DK^{-}, D \rightarrow KsK^{-}\pi^{+}$

Tagged D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

この2つの平面上の分布のモデルを重ね合わせてそれ ぞれの $B \rightarrow DK$, $D \rightarrow K_S K \pi$ の平面をフィットすることになる。

Tagged D D Dalitz Plot

フィットに用いる $D \rightarrow K_s K \pi \sigma$ Dalitz plot の分布のモデルは tagged D (from $D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

今回はこちらの Dalitz plot のフィットの手法、 fitter の検証についての話をします。

Tagged Dの選定

- Y(4S) のデータ 141 fb⁻¹ を使用。
- $p^{*}(D^{*}) > 2.5 \text{ GeV/c}$
- | *Ks* mass (PDG) *Ks* mass | < 0.0125 (~4 σ)
- D^0 mass と ΔM は 2σ でカット。

共鳴の分布関数

$$\begin{split} & \text{Spin 0} \quad A_0 = F_D F_r \frac{1}{M_r^2 - M_{AB}^2 - iM_r \Gamma_{AB}} \\ & \text{Spin 1} \\ & A_1 = F_D F_r \frac{M_{BC}^2 - M_{AC}^2 + \frac{(M_D^2 - M_C^2)(M_A^2 - M_B^2)}{M_{AB}^2}}{M_r^2 - M_{AB}^2 - iM_r \Gamma_{AB}} \\ & \text{Spin 2} \\ & A_2 = \frac{F_D F_r}{M_r^2 - M_{AB}^2 - iM_r \Gamma_{AB}} \left[\left(M_{BC}^2 - M_{AC}^2 + \frac{(M_D^2 - M_C^2)(M_A^2 - M_B^2)}{M_{AB}^2} \right)^2 \\ & - \frac{1}{3} \left(M_{AB}^2 - 2M_D^2 - 2M_C^2 + \frac{(M_D^2 - M_C^2)^2}{M_{AB}^2} \right) \left(M_{AB}^2 - 2M_A^2 - 2M_B^2 + \frac{(M_A^2 - M_B^2)^2}{M_{AB}^2} \right) \right] \\ & a_0(980)^{\pm} A_{a_0}(980) = F_D F_r \frac{g_{K\overline{K}}}{M_r^2 - M_{AB}^2 - i(\rho_{\eta\pi}g_{\eta\pi}^2 + \rho_{K\overline{K}}g_{K\overline{K}}^2)} \\ \end{split}$$

Dalitz plane のフィットはパラメータが非常に多く 複雑なため、MC(干渉の効果を考慮)を用いて フィットの精度を確かめておく必要がある。

今回はジェネレーターレベルでのテストについ て発表する。

この7個の共鳴を使う

$\overline{K}_{0}^{*}(1430)^{0} K_{S}$
$\overline{K}^{*}(892)^{0} K_{-}$
$M(0)2)M_{S}$
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$
$K_0^*(1430)^+ K^-$
$K^*(892)^+ K^-$
$K_1^*(1680)^+ K^-$
$K_2^*(1430)^+ K^-$
$a_0(980)^- \pi^+$
$a_0(1450)^- \pi^+$
$a_2(1320)^- \pi^+$
Non-resonant

7個の共鳴を使ったテスト

50,000 events are generated at Y(4S) on-resonance

プロジェクションのテスト

まず、ジェネレータとフィッターで同じ分布を使っているかを確認。 (ジェネレータとフィッターで同じパラメータを入力)

20

Dalitz plane のフィットでは、パラメータの初期値によって、 解が間違った値に収束してしまう場合があるため、100個の 初期値でフィットをする。

フィット結果(続き)

間違った値に収束してしまうのは、-2logLが 真の解以外のところで極小値を持ってしまうため。

そこで

 $\left| -2 \log(L/L_{max}) \right| < 1$

を課すと・・・

解が一つに収束することを確認

フィット結果(続き)

アンサンブルテスト

このフィットの正当性を示すために、100個の別統計の MCに対してフィットを行った。

 $K_1^*(1680)^+ K^-$

100個のフィット結果について無矛盾な結果が得られた。

フィッターが正しく動作していることが確認できた。

実データのフィットに向けて

実際のデータやシミュレーションレベルでのフィットを行うためには、 BGや検出効率を考慮しなければならない。

- バックグラウンドは D の purity から フラクションを固定。
- バックグラウンドの形状は D mass の サイドバンドから決定。
- Dalitz plot 上の検出効率を考慮。

まとめ

 $B \rightarrow DK, D \rightarrow K_S K \pi$ 崩壊を用いた ϕ_3 の測定を目指した 解析を行っている。

- B→DK, D→KsK π 崩壊を用いた ϕ_3 の測定は未だなされていない。
- この崩壊モードだけでφ₃を測定することが出来る。
- 2次元フィットを行い、B→Dπ, D→KsKπのシグナルを得た。
 B⁻→Dπ⁻, D→KsK⁻π⁺: 1,359 ± 44(stat) events
 B⁻→Dπ⁻, D→KsK⁺π⁻: 946 ± 38(stat) events
 (Belleの全データ(770M BB events)を使用)
- Dalitz plot の解析に用いられるB-→DK-のイベント数を見積もった。

B⁻→DK⁻, D→KsK⁻ π^+ : 92 ± 6 events B⁻→DK⁻, D→KsK⁺ π^- : 64 ± 4 events

まとめ

- $D \rightarrow K_S K \pi \sigma$ Dalitz plot 解析の有用な結果は未だない。
- $D \rightarrow K_S K \pi \sigma$ Dalitz plot のフィット手法を確立し、 $D \rightarrow K_S K \pi$ を用いた ϕ_3 測定の可能性を示した。

- シミュレーションレベル、実データのフィットを行う。
- $D^0 \rightarrow K_S K^+ \pi^- \mathcal{O}$ Dalitz plot $\mathcal{O} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$
- 作成した D^0 の Dalitz plot のモデルを利用して $B \rightarrow DK$, $D \rightarrow K_S K \pi$ をフィットし、 ϕ_3 の情報を得る。

- B→DK, D→ K_sKπ 崩壊の研究
 - KSFW Likelihood ratio
 - $コントロールサンプル(B \rightarrow D\pi, D \rightarrow KsK\pi)$ の研究
 - 期待される B→DK イベントの数
 - ダリッツ解析の必要性

B→DK, D→ K_sKπ崩壊の研究

Selection criteria

Impact parameter	dr < 5mm, $ dz < 5cm$
M _{bc}	$5.27 < M_{bc} < 5.29 \ GeV/c^2$
PID	for all charged K : PID(K) > 0.6 for all charged π : PID(π) < 0.4
Mass	$\begin{split} M(\pi^+\pi^-) - M(K_S) &< 0.0125 \ GeV/c^2 \\ M(K^*K) - M(D^0) &< 0.0159 \ GeV/c^2 \end{split}$
Best candidate selection	Use the best M _{bc}

Y(4S)の全データ(711 fb⁻¹)を使用。

Likelihood Ratio (KSFW)

信号事象の数は2次元フィット (KSFW Likelihood vs ΔE)によって 求められる。

KSFW: 運動量方向などからイベントの 形状を数値化する手法。

シグナル(Bを経由)は球状に、 qqイベントはジェット状に分布

KSFW Likelihood (MC)

シグナルとqqバックグラウンドはよく分離できている。

フィットに用いるPDF

for signal	Double gaussian
for $B\overline{B}$ background	Exponential
for $q\bar{q}$ background	1 st chebyshev

For KSFW likelihood Histogram PDF

for signal	Obtained from signal MC
for $B\overline{B}$ background	Obtained from $B\overline{B}$ MC
for $q\overline{q}$ background	Obtained from $q\overline{q}$ MC

∆EとKSFWの相関

△EとKSFW likelihoodはほとんど相関を持たない。

そのため、2次元フィットのためのPDFは、単純に△Eと KSFW likelihoodのPDFの積として表すことが出来る。

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{-}\pi^{+}$

Projection for each axis

Blue dashed : $q\overline{q}$ BG, Green dashed : $B\overline{B}$ BG

Signal events : $1359 \pm 44(\text{stat})$

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{+}\pi^{-}$

Projection for each axis

Signal events : $946 \pm 38(\text{stat})$

期待されるB→DKイベントの数

B⁻→D π ⁻, D→KsK⁻ π ⁺ : 1,359 ± 44(stat) events B⁻→D π ⁻, D→KsK⁺ π ⁻ : 946 ± 38(stat) events

 $B \rightarrow DK, D \rightarrow K\pi の解析によると、$

(Y. Horii, K. Trabelsi, H. Yamamoto et al., PRD 78, 071901(R) (2008))

 $\frac{Br(B^{-} \rightarrow DK^{-})}{Br(B^{-} \rightarrow D\pi^{-})} = [6.77 \pm 0.23(stat) \pm 0.30(syst)] \times 10^{-2}$

期待される $B \rightarrow DK$, $D \rightarrow K_s K \pi 1 \prec \nu h o$ 数は、

B⁻→DK⁻, D→KsK⁻ π^+ : 92 ± 6 events B⁻→DK⁻, D→KsK⁺ π^- : 64 ± 4 events

The merit of LR(KSFW)

These distributions are reasonable.

Dalitz Plot

Dalitz plot (real data) with $|\Delta E| > 0.04$ GeV & LR(KSFW) > 0.2

K*Kのイベントが支配的

より複雑な構造が見て取れる (K*K, K*⁰K⁰, non-resonant, etc.)

これらのダリッツプロットをフィットし、それぞれの共鳴状態の振幅などの情報を得る必要がある。

Dalitz Plot

Dalitz plot (real data) with $|\Delta E| > 0.04$ GeV & LR(KSFW) > 0.8

Tagged D events

フィットに用いるD→KsK π のダリッツ平面のモデルはtagged D (from D*+→D⁰ π +, D*-→D⁰ π -)を用いて作られる。

Y(4S) の全データを用いた場合に期待されるtagged D のイベント数は D⁰→KsK⁻π⁺:~70,000 events D⁰→KsK⁺π⁻:~44,000 events

Tagged D D Dalitz Plot

このダリッツプロットから作成したモデルを使ってB→DKのダ リッツプロットをフィットすることになる。

 $B \rightarrow DK \overline{C} U^{0} E \overline{D}^{0} U^{0} E \overline{D}^{0} U^{0} E^{0} E^{0$

Fitter のテストの全結果

Fit test

Fit test (cont.)

Fit test (cont.)

Fit test (cont.) $\sqrt{-2\log(L/L_{max})} < 1$

Fit test (cont.) $\sqrt{-2\log(L/L_{max})} < 1$

- The fitter was tested at generation level using 100 MCs which include 7 resonances.
- 50,000 events are generated per 1 MC at Y(4S) on-resonance, SVD1 & SVD2.
- The past fitting, 100 fitting was executed per 1 MC, but this time, 1 fitting per 1 MC.
- This fitting is tested using the random and fixed (at generation values) initial parameters.

 $\overline{K}_{0}^{*0} (1430) K_{S}$ $\overline{K}_{1}^{*0} (1680) K_{S}$ $K_{0}^{*+} (1430) K^{-}$ $K_{1}^{*+} (892) K^{-}$ $K_{1}^{*+} (1680) K^{-}$ $K_{2}^{*+} (1430) K^{-}$ $a_{0}^{-} (980) \pi^{+}$

Projection & fit test using 7 resonances

Fit test

The initial parameters are fixed at generation value.

Fit test (cont.)

The initial parameters are fixed at generation value.

PDF integration method

$$\int \left| \sum_{j} a_{j} e^{i\phi_{j}} A_{j} \right|^{2} d\mathcal{DP} = \sum_{j} \sum_{j'} a_{j} a_{j'}^{*} e^{i(\phi_{j} - \phi_{j'})} \int A_{j} A_{j'}^{*} d\mathcal{DP}$$

Previous

New

Need to calculate the integration one time only using new method.