

$B \rightarrow DK, D \rightarrow K_s K \pi$ 崩壊を使った CP非保存角 ϕ_3 の測定のための $D^* \rightarrow D\pi, D \rightarrow K_s K \pi$ 崩壊の Dalitz plot解析

2012年3月24日 東北大学 **鈴木 善明** and Belle collaboration 日本物理学会@関西学院大学 24aGG-4

目次

- イントロダクション

 CP非保存角 φ₃
 B[±]→DK[±]崩壊を用いた φ₃ の測定
 D^{*}→Dπ, D→ K_sKπ の解析の必要性
- *D**^{*±*}→*D*π^{*±*}, *D*→ *K*_sK[∓]π^{*±*} 崩壊の研究
 *D*の選定
 - Dalitz plot のフィットの手法
 - 結果
- ・まとめ

CP非保存角
$$\phi_3$$

CKM行列
 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

ユニタリー条件
 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

 ϕ_3

 ϕ_3

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_3

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_2

 ϕ_1

 ϕ_1

 ϕ_2

 $\phi_$

 ϕ_1, ϕ_2 は精度よく測定されており、 ϕ_3 の値が新物理の 有無(三角形が閉じるか否か)を決める。

$$\phi_{1} = 21.38^{\circ} + 0.79^{\circ} - 0.77^{\circ}$$

$$\phi_{2} = 89.0^{\circ} + 4.4^{\circ} - 4.2^{\circ}$$

$$\phi_{3} = 68^{\circ} + 10^{\circ} - 11^{\circ}$$

CKMfitter, LP2011

*φ*₃の測定精度の向上が課題

$$\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right)$$
$$\sim -\arg\left(V_{ub}\right)$$

b→*u* 遷移を含む崩壊(*B*→*DK*)で *φ*₃の測定が可能。

*B→DK*崩壊

 $B^- \ge B^+$ の崩壊分岐比を測定することで δ, ϕ_3 が求まる。

_{Do}の崩壊

本研究では、Dの崩壊としてD→K_sKπ崩壊を用いる。

- 様々な中間共鳴状態による様々な強い相互作用の状態が寄与するため、

 _{φ3}に強い制限をかけることが可能。
- 類似の $D \rightarrow K_s \pi \pi$ の Dalitz plot 解析による測定は高精度である。

特に、最大の共鳴である *D→K**K*-と *D→K**K*+は、強い相互作用による位相の 絶対値が等しいため、強い制限をかける ことが出来る。

同じ過程で崩壊

Tagged DのDalitz Plot 解析

フィットに用いる $D \rightarrow K_S K \pi O$ Dalitz plot の分布のモデルは $D^0 \ge \overline{D}^0$ を 区別できる tagged D (from $D^{*+} \rightarrow D^0 \pi^+$, $D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

Tagged DのDalitz Plot 解析

フィットに用いる $D \rightarrow K_S K \pi O$ Dalitz plot の分布のモデルは $D^0 \ge \overline{D}^0$ を 区別できる tagged D (from $D^{*+} \rightarrow D^0 \pi^+$, $D^{*-} \rightarrow \overline{D}^0 \pi^-$)を用いて作成する。

この2つの平面上の分布のモデルを重ね合わせてそれ ぞれの $B \rightarrow DK$, $D \rightarrow K_{s}K\pi$ の平面をフィットすることになる。

Tagged Dの選定

- Y(4S) のデータ 711 fb⁻¹を使用。
- p*(D*) > 2.5 GeV/c
- | K_s mass (PDG) K_s mass | < 0.0125 (~4 σ)
- Likelihood によって K, πを識別。
- D^0 mass と ΔM は 2σ でカット。

Background の種類 Combinatorial BG (cmb-BG): D⁰の再構成を間違えたもの

Random π BG (rnd-BG): D⁰ は正しく再構成できたが、 D* の再構成を間違えたもの

フィットの手法

 $m^2(K \pi)$

0.5

0.5

efficiency

 $m^2(Ks \pi)$

0.094

0.092

0.09

0.088

0.086 0.084

0.082

- unbinned likelihood fit を利用。
- Dalitz plot 上の検出効率を考慮。
- cmb-BGは D の purity からフラク ションを固定。
- cmb-BGの形状は D mass のサイ ドバンドから決定。

rnd-BG について

- D⁰ は正しく再構成されている。
- π[±]_{slow}の電荷が真の事象と合っているものはシグ ナルとして扱う。
- π[±]_{slow} の電荷を間違えているものはもう一つのモー ドが混入したバックグラウンドとなる。

$$\overline{K}_{0}^{*}(1430)^{0} K_{S}$$

 $\overline{K}^{*}(892)^{0} K_{S}$
 $\overline{K}_{1}^{*}(1680)^{0} K_{S}$
 $\overline{K}_{2}^{*}(1430)^{0} K_{S}$
 $K_{0}^{*}(1430)^{+} K^{-}$
 $K^{*}(892)^{+} K^{-}$
 $K_{1}^{*}(1680)^{+} K^{-}$
 $K_{2}^{*}(1430)^{+} K^{-}$
 $a_{0}(980)^{-} \pi^{+}$
 $a_{0}(1450)^{-} \pi^{+}$
 $A_{2}(1320)^{-} \pi^{+}$

フィットに用いる PDF

$$PDF_{sig}$$
Breit-Wigner の分布を用いたアイソバーモデル。 $PDF_{sig} = N_{norm} \left| \sum_{j} a_{j} e^{i\varphi_{j}} A_{j} \right|^{2}$
赤字: フリーパラメータ
 A_{j} : B-W amplitudeフラクションの定義
 $f_{i} = \frac{\int |a_{i} e^{i\varphi_{i}} A_{i}|^{2} dm_{x}^{2} dm_{y}^{2}}{\int |\sum_{j} a_{j} e^{i\varphi_{j}} A_{j}|^{2} dm_{x}^{2} dm_{y}^{2}}$ PDF_{rnd} もう一つのモードを rnd-BG (< 1%) を無視してフィット
することによって得る。 PDF_{cmb} D^{0} mass のサイドバンドから決定する。

$$PDF = f_{rnd}f_{ra}PDF_{rnd} + f_{cmb}PDF_{cmb} + (1 - f_{rnd}f_{ra} - f_{cmb})PDF_{sig}$$

$$f_{cmb}$$
 : cmb-BG の割合
 f_{rnd} : rnd-BG の割合
 f_{ra} : rnd-BG にもう一つのモードが混入する割合

フィット結果:D⁰→K_SK⁻π⁺ preliminary

80	Mode	Fraction	Amplitude	Phase [rad]
(R) 1.5 (R) X) 1.5 (R)	$\bar{K}_0^*(1430)^0 K_S$	0.373	4.177±0.354	2.645 ± 0.071
	$\bar{K}^*(892)^0 K_S$	0.012	0.136 ± 0.006	-2.004 ± 0.045
	$\bar{K}_1^*(1680)^0 K_s$	0.330	11.25 ± 0.668	2.772 ± 0.029
	$\bar{K}_2^*(1430)^0 K_S$	0.010	1.545 ± 0.290	-2.934 ± 0.127
$m^{2}(K_{\rm S} \pi)^{1.5}$	$K_0^*(1430)^+ K^-$	0.065	1.724 ± 0.376	-0.158 ± 0.271
	K*(892) ⁺ K ⁻	0.611	1	0
§ 1.5⊢ X ² 5	$K_1^*(1680)^+ K^-$	0.418	12.67 ± 0.484	-2.797±0.037
	$K_2^*(1430)^+ K^-$	0.068	3.989±0.276	0.417 ± 0.037
1-	$a_0(980)^- \pi^+$	0.128	2.242 ± 0.126	2.817 ± 0.055
0.5	$g_{K\overline{K}}$		0.823	
0.5 1 $1.5m^2 (GeV/c2)2$	$a_0(1450)^- \pi^+$	0.055	1.034 ± 0.052	-0.075 ± 0.033
χ^2 / ndf = 1.37	$a_2(1320)^- \pi^+$	0.00012	0.069 ± 0.034	-1.507 ± 0.482
	N.R.	0.134	2.927 ± 0.442	0.124 ± 0.155
9 1500 9 1000 1000 <td>Sum</td> <td>2.203</td> <td></td> <td></td>	Sum	2.203		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	強い共鳴がある程度の位相差を持って分布しているので、Bの崩壊による位相がどのような 値であっても々 を測定することが出来る		$\pi \longrightarrow 0$	
黒点 : データ , <mark>赤緑</mark> : フィット関数	\mathbb{E}		- И`Ш Т О́0	

フィット結果:D⁰→K_SK⁺π⁻ preliminary

まとめとプラン

 $B \rightarrow DK, D \rightarrow K_s K \pi$ 崩壊を用いた ϕ_s の測定を目指した解析を行っている。

- $D \rightarrow K_s K \pi o$ Dalitz plot 解析の有用な結果は未だない。
- フレーバーが分かる $D^{*+} \rightarrow D^0 \pi^+$ 由来の Dを用いて $D^0 \rightarrow K_s K^{\pm} \pi^{\mp}$ の Dalitz plot をフィットし、情報を得た。
- $D \rightarrow K_s K \pi$ の Dalitz plot のフィット手法を確立し、 $D \rightarrow K_s K \pi e$ 用いた ϕ_3 測定の可能性を示した。

プラン

- フィットに用いる共鳴を再考し、最適なモデルを選択する。
- D⁰→K_sK⁻π⁺とD⁰→K_sK⁺π⁻の平面を同時フィットする。
- 作成した D^{0} の Dalitz plot のモデルを利用して $B \rightarrow DK$, $D \rightarrow K_{s}K\pi$ をフィットし、 ϕ_{3} の情報を得る。

Backup

- 積分ルミノシティ: 1014 fb⁻¹ (Y(4S): 711 fb⁻¹)
- SuperKEKB, BelleIIへのアップグレードのため2010年6月 に運転終了。

Control sample : $B \rightarrow D\pi$, $D \rightarrow KsK\pi$

Efficiency of SVD1

10,000,000 events are generated. The efficiency of the Dalitz plane was fitted using cubic polynomial.

Projection for $K\pi$

 $\chi^2/ndf = 1.03$

SVD1: ~ 6 %

Efficiency of SVD2

10,000,000 events are generated. The efficiency of the Dalitz plane was fitted using cubic polynomial.

 $\chi^2\!/ndf=0.958$

SVD2: ~ 9 %

Combinatorial BG : $D^0 \rightarrow K_S K^- \pi^+$

Combinatorial BG distributions are extracted from D⁰ mass sideband (- $10\sigma \sim 5\sigma$, $5\sigma \sim 10\sigma$). The distribution are smoothed by paw.

Combinatorial BG : $D^0 \rightarrow K_S K^+ \pi^-$

Combinatorial BG distributions are extracted from D⁰ mass sideband (-10 σ ~-5 σ , 5 σ ~10 σ). The distribution are smoothed by paw.

Random pion BG : feed-through

In the rnd-BG, if the charge of captured π_{slow} is the same as the charge of the true π_{slow} , such events are equivalent to the signal. On the other hand, if the charge of captured π_{slow} is the opposite, such events are background of the another mode.

Thus, there is a feed-through by the another mode in the rnd-BG.

Angular dependence

Multiple solutions

There are multiple solutions because of local maximum of likelihood. Therefore 100 random initial values are used for the fit of Dalitz plane.

Multiple solutions were vanished.

Multiple solutions : $D^0 \rightarrow K_S K^- \pi^+$

To check that multiple solutions are vanished, one parameter is shown for example.

 $K_1^*(1680)^0 K_S$

Only one solution remains.

Maximum likelihood result : $D^0 \rightarrow K_S K^- \pi^+$

Mode	Fraction	Amplitude	Phase [rad]
$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.373	4.177±0.354	2.645 ± 0.071
$\overline{K}^*(892)^0 K_S$	0.012	0.136 ± 0.006	-2.004 ± 0.045
$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.330	11.25 ± 0.668	2.772 ± 0.029
$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.010	1.545 ± 0.290	-2.934 ± 0.127
$K_0^*(1430)^+ K^-$	0.065	1.724 ± 0.376	-0.158 ± 0.271
K*(892) ⁺ K ⁻	0.611	1	0
$K_1^*(1680)^+ K^-$	0.418	12.67 ± 0.484	-2.797 ± 0.037
$K_2^*(1430)^+ K^-$	0.068	3.989 ± 0.276	0.417 ± 0.037
$a_0(980)^- \pi^+$	0.128	2.242 ± 0.126	2.817 ± 0.055
$g_{\kappa \overline{\kappa}}$		0.823	
$a_0(1450)^- \pi^+$	0.055	1.034 ± 0.052	-0.075 ± 0.033
$a_2(1320)^- \pi^+$	0.00012	0.069 ± 0.034	-1.507 ± 0.482
N.R.	0.134	2.927 ± 0.442	0.124 ± 0.155
Sum	2.203		

Black dots : data , Red line : fitted function

Fit result : $D^0 \rightarrow K_S K^+ \pi^-$

To check that multiple solutions are vanished, one parameter is shown for example.

Only one solution remains.

Maximum likelihood result : $D^0 \rightarrow K_S K^+ \pi^-$

	Mode	Fraction	Amplitude	Phase [rad]
	$\overline{K}_{0}^{*}(1430)^{0} K_{S}$	0.316	6.150 ± 0.626	3.033 ± 0.125
	$\overline{K}^*(892)^0 K_S$	0.034	0.368 ± 0.013	3.107 ± 0.048
	$\overline{K}_{1}^{*}(1680)^{0} K_{s}$	0.125	11.08 ± 0.819	2.290 ± 0.050
	$\overline{K}_{2}^{*}(1430)^{0} K_{S}$	0.061	6.194 ± 0.391	-3.059 ± 0.051
	$K_0^*(1430)^+ K^-$	0.240	5.305 ± 0.674	-2.434 ± 0.076
	$K^*(892)^+ K^-$	0.239	1	0
	$K_1^*(1680)^+ K^-$	0.280	16.58 ± 1.087	-2.734 ± 0.059
	$K_2^*(1430)^+ K^-$	0.040	4.926 ± 0.338	0.647 ± 0.073
	$a_0(980)^- \pi^+$	0.160	4.730 ± 0.344	-3.095 ± 0.149
	$g_{\kappa \overline{\kappa}}$		0.457 ± 0.04	.9
	$a_0(1450)^- \pi^+$	0.005	0.497 ± 0.098	-1.932 ± 0.163
	$a_2(1320)^- \pi^+$	0.0007	0.261 ± 0.053	0.163 ± 0.204
	N.R.	0.299	6.991 ± 0.886	0.175 ± 0.115
.5	Sum	1.801		
$eV/c^{2})^{2}$				

Black dots : data , Red line : fitted function

Selection criteria (for B events)

Impact parameter	dr < 5mm, $ dz < 5cm$
M_{bc}	$5.27 < M_{bc} < 5.29 \ GeV/c^2$
PID	for all charged K : PID(K) > 0.6 for all charged π : PID(π) < 0.4
Mass	$\begin{split} M(\pi^+\pi^-) - M(K_S) &< 0.0125 \ GeV/c^2 \\ M(K^*K) - M(D^0) &< 0.0159 \ GeV/c^2 \end{split}$
Best candidate selection	Use the best M _{bc}

Y(4S)の全データ(711 fb⁻¹)を使用。

Likelihood Ratio (KSFW)

信号事象の数は2次元フィット (KSFW Likelihood vs ΔE)によって 求められる。

KSFW: 運動量方向などからイベントの 形状を数値化する手法。

シグナル(Bを経由)は球状に、 qqイベントはジェット状に分布

KSFW Likelihood (MC)

シグナルとqqバックグラウンドはよく分離できている。

フィットに用いるPDF

for signal	Double gaussian
for $B\overline{B}$ background	Exponential
for $q\bar{q}$ background	1 st chebyshev

For KSFW likelihood Histogram PDF

for signal	Obtained from signal MC
for $B\overline{B}$ background	Obtained from $B\overline{B}$ MC
for $q\overline{q}$ background	Obtained from $q\overline{q}$ MC

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{-}\pi^{+}$

Projection for each axis

Blue dashed : $q\overline{q}$ BG, Green dashed : $B\overline{B}$ BG

Signal events : $1359 \pm 44(\text{stat})$

Control sample : $B^{-} \rightarrow D\pi^{-}$, $D \rightarrow KsK^{+}\pi^{-}$

Projection for each axis

Signal events : $946 \pm 38(\text{stat})$

期待されるB→DKイベントの数

B⁻→D π^- , D→KsK⁻ π^+ : 1,359 ± 44(stat) events B⁻→D π^- , D→KsK⁺ π^- : 946 ± 38(stat) events

 $B \rightarrow DK, D \rightarrow K\pi の解析によると、$

(Y. Horii, K. Trabelsi, H. Yamamoto et al., PRD 78, 071901(R) (2008))

 $\frac{Br(B^{-} \rightarrow DK^{-})}{Br(B^{-} \rightarrow D\pi^{-})} = [6.77 \pm 0.23(stat) \pm 0.30(syst)] \times 10^{-2}$

期待される $B \rightarrow DK$, $D \rightarrow K_s K \pi 1 \prec \nu h o 数は、$

B⁻→DK⁻, D→KsK⁻ π^+ : 92 ± 6 events B⁻→DK⁻, D→KsK⁺ π^- : 64 ± 4 events

Dalitz Plot

Dalitz Plot

 $D^{0}(D^{0}) \rightarrow K^{*+}K^{-} D^{0}(\overline{D^{0}}) \rightarrow K^{*-}K^{+}$ の2つの終状態が存在する。

Bの電荷と合わせてモードを判別する。 $B^{\oplus} \rightarrow [K^{*\oplus}K^{\pm}]_D K^{\pm}$ Opposite mode $B^{\oplus} \rightarrow [K^{*\oplus}K^{\mp}]_D K^{\pm}$ Same mode また、K*は $K^{*\pm} \rightarrow K^{\pm}\pi^0 : 1/3$ $K^{*\pm} \rightarrow K^0\pi^{\pm} : 2/3$ で崩壊する。

変形GW法

B⁺, B⁻の分岐比

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{-} \pi^{+} \quad A[B^{-} \rightarrow K^{-} (K^{*+} K^{-})_{D}] = |A_{B} A_{D}| \left[1 + \mathbf{r}_{B} \mathbf{r}_{D} e^{i(\delta_{B} + \delta_{D} - \phi_{3})} \right]$ $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \pi^{-} \quad A[B^{-} \rightarrow K^{-} (K^{*-} K^{+})_{D}] = |A_{B} A_{D}| e^{i\delta_{D}} \left[\mathbf{r}_{D} + \mathbf{r}_{B} e^{i(\delta_{B} - \delta_{D} - \phi_{3})} \right]$

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{-} \pi^{+} \quad A[B^{+} \rightarrow K^{+} (K^{*-} K^{+})_{D}] = |A_{B} A_{D}| \left[1 + \frac{r_{B}}{r_{D}} e^{i(\delta_{B} + \delta_{D} + \phi_{3})} \right]$

 $\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}^{+} \pi^{-} \quad A[B^{+} \rightarrow K^{+} (K^{*+} K^{-})_{D}] = |A_{B} A_{D}| e^{i \delta_{D}} \left[r_{D} + \frac{r_{B}}{r_{B}} e^{i (\delta_{B} - \delta_{D} + \phi_{3})} \right]$

$$\mathbf{r}_{B} = \left| \frac{\bar{A}_{B}}{A_{B}} \right| = \left| \frac{A(B^{-} \to \bar{D}^{0}K^{-})}{A(B^{-} \to D^{0}K^{-})} \right|, \quad r_{D} = \left| \frac{\bar{A}_{D}}{A_{D}} \right| = \left| \frac{A(\bar{D}^{0} \to K^{*+}K^{-})}{A(D^{0} \to K^{*+}K^{-})} \right|$$

 r_D は他の測定で精度よく測定されている(既知数)とする。 \rightarrow 未知数は δ_D , δ_B , r_B , ϕ_3 の4つ。分岐比の4式を連立すれば解ける。 この崩壊モードのみで ϕ_3 の測定が可能

$$\cos\phi_3 = \frac{(R_1 + R_3 - 2)^2 - (R_2 + R_4 - 2r_D^2)^2}{4[(R_1 - 1)(R_3 - 1) - (R_2 - r_D^2)(R_4 - r_D^2)]}$$

$$R_1 = \left[\frac{A[B^- \to K^-(K^{*+}K^-)_D]}{A_B A_D}\right]^2, \ R_2 = \cdots$$

The merit of LR(KSFW)

These distributions are reasonable.