

CP Violation studies at Belle (including UT angles)

Kentaro Negishi (Tohoku Univ.) on behalf of the Belle collaboration

XIth International Conference on Heavy Quarks and Leptons (12, June 2012, Prague, Czech)

KEKB and Belle

- Belle started in 1999.
 - Experiment designed for ϕ_1 extraction.
 - Data taking is finished at 2010.

Belle data set

Integrated luminosity of B factories

Belle has ~772 M B \overline{B} pairs data as the final sample

KM unitarity triangle and CPV parameter convention

$$V_{KM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

by Wolfenstein parameterization

Irreducible complex phase causes CP Violation!

- Comprehensive test; measure all the angles and sides.
- B system : very good place, all the angles are O(0.1)!

Time-dependent CPV in decays to CP eigenstates

(S, A)

 (-ξsin2φ₁, 0) for (cc̄)K_{S/L} (ξ = ±1)
 (sin2φ₂, 0) for ππ (if tree only)

$sin2\phi_1$ at Belle (772 M BB, final sample)

Signal yield increased more than N_{BB} compared to the previous publication (PRL 98, 031802), thanks to the data reprocessing with improved tracking.

	J/ψ K _s	J/ψ K _L	ψ(2S) K _s	$\chi_{c1} K_{S}$	N _{BB}
N _{sig.}	12727 ± 115	10087 ± 154	1981 ± 46	943 ± 33	772 M
Purity(%)	97	63	93	89	
N _{sig.} (prev.)	7484 ± 87	6512 ± 123			535 M
Purity(%) (prev.)	97	59			

$sin2\phi_1$ at Belle (772 M BB)

	S	Α				
J/ψ K _s	0.671 ± 0.029	-0.014 ± 0.021				
ψ(2S) K _s	0.739 ± 0.079	0.103 ± 0.055				
χc1 K _s	0.636 ± 0.117	-0.023 ± 0.083				
J/ψ K _L	-0.641 ± 0.047	0.019 ± 0.026				
$\sin 2\phi_1 = 0.667 \pm 0.023 \pm 0.012$						
A =	= +0.006 ± 0	$.016 \pm 0.012$				

sin (2)	$(5) \equiv 9$	SII	$n(2\phi_1)$
BaBar PRD 79 (2009):072009			0.69 ± 0.03 ± 0.01
BaBar χ _{ο0} K _S PRD 80 (2009) 112001	·		0.69 ± 0.52 ± 0.04 ± 0.07
BaBar J/ψ (hadronic) K _S PRD 69 (2004):052001			H ★ 1,56 ± 0.42 ± 0.21
Belle PRL 108 (2012) 171802			$0.67 \pm 0.02 \pm 0.01$
ALEPH PLB 492, 259 (2000)		*	0.84 ^{+0.82} -1.04 ± 0.16
OPAL EPJ C5, 379 (1998)			H→ 3.20 ^{+1.80} ± 0.50
CDF PRD 61, 072005 (2000)		*	0.79 ^{+0.41} _{-0.44}
LHCb LHCb-CONF-2011-004	► ★	4	$0.53 \ _{-0.29}^{+0.28} \pm 0.05$
Belle5S PRL 108 (2012) 171801	+		0.57 ± 0.58 ± 0.06
Average HFAG			0.68 ± 0.02
-2 -1	0		1 2 3

ϕ_2 determination

$$A(B^{0} \to \pi^{+}\pi^{-}) = T^{+-}e^{i\phi_{3}} + P$$
$$A(t) = \mathbf{S}_{\pi^{+}\pi^{-}}\sin(\Delta m t) - \mathbf{A}_{\pi^{+}\pi^{-}}\cos(\Delta m t)$$
$$= \sqrt{1 - \mathbf{A}_{\pi^{+}\pi^{-}}}\sin 2\phi_{2,\text{eff}}\sin(\Delta m t) - \mathbf{A}_{\pi^{+}\pi^{-}}\cos(\Delta m t)$$

 From time dependent CP Violation, we can measure φ_{2,eff} instead of φ₂.
 S_{π+π⁻} = sin 2φ₂ + 2r cos δ sin(φ₁ + φ₂) cos 2φ₂ + O(r²) r = |P|/|T|

Additional inputs required to determine the penguin pollution.

Isospin analysis

$$A_{+-} = A(B^{0} \to \pi^{+}\pi^{-}) = e^{-i\phi_{2}}T^{+-} + P$$

$$\sqrt{2}A_{00} = \sqrt{2}A(B^{0} \to \pi^{0}\pi^{0}) = e^{-i\phi_{2}}T^{00} + P$$

$$\sqrt{2}A_{+0} = \sqrt{2}A(B^{+} \to \pi^{+}\pi^{0}) = e^{-i\phi_{2}}(T^{00} + T^{+-}) \xrightarrow{\frac{1}{\sqrt{2}}|\bar{A}_{+-}|}$$

$$A_{+-} + \sqrt{2}A_{00} = \sqrt{2}A_{+0}$$

$$\bar{A}_{+-} + \sqrt{2}\bar{A}_{00} = \sqrt{2}\bar{A}_{+0}$$

$$|\bar{A}_{+0}| = |A_{+0}|$$

$$|\bar{A}_{00}|$$

- EWP is neglected $\rightarrow A_{+0}$ pure tree $|A_{+0}| = |\overline{A}_{+0}|$
- ϕ_2 can be resolved with up to the 8-fold ambiguity $(\phi_2 \in [0, \pi])$

Combined ($\pi\pi$, $\rho\pi$, $\rho\rho$) measurements for ϕ_2 determination

dominated by the $B \rightarrow \rho\rho$ measurements (though flat isospin triangles)

$B \rightarrow a_1^{\pm} \pi^{\overline{+}}, a_1^{\pm} \rightarrow (\pi^+ \pi^-) \pi^{\pm}$

• $B \rightarrow a_1^{\pm} \pi^{\mp}$ can be used to determine $\phi_{2,eff}$. $-a_1\pi$ is not CP-eigenstate.

• 2 interferences are observed

$$(B^{0} \rightarrow a_{1}^{+}\pi^{-}, \overline{B}^{0} \rightarrow a_{1}^{+}\pi^{-}) (B^{0} \rightarrow a_{1}^{-}\pi^{+}, \overline{B}^{0} \rightarrow a_{1}^{-}\pi^{+})$$

$$\mathcal{P}(\Delta t, q, c) \equiv (1 + c\mathbf{A}_{CP}) \frac{e^{-\frac{|\Delta t|}{\tau_{B^{0}}}}}{8\tau_{B^{0}}} \{1 + q[(\mathbf{S}_{CP} + c\Delta \mathbf{S}) \sin \Delta m_{d} \Delta t - (\mathbf{S}_{CP} + c\Delta \mathbf{C}) \cos \Delta m_{d} \Delta t]$$

$$a_{1}^{+}: c = +1; a_{1}^{-}: c = -1$$

5 CPV parameters

- B^{0} : q = +1; B^{0} : q = -1
- A_{CP} : time and flavor integrated direct CPV par.
- C_{CP}: flavor-dependent direct CPV par.
- S_{CP} : mixing-induces CPV par.
- ΔC : rate difference between the decay channels
- ΔS : strong phase difference between the decay channels

$B \rightarrow a_1^{\pm} \pi^{\overline{+}}, a_1^{\pm} \rightarrow (\pi^+ \pi^-) \pi^{\pm}_{arXiv: 1205, 5957}$

772 M BB

Fisher : for continuum suppression

• Signal extracted from a 4D(ΔE , F, m_{3 π}, H_{3 π}) fit

N_{sig.} = 1445 ± 101 Br(B⁰→a₁[±](1260)π⁻)×Br(a₁[±] → π⁺π⁻π[±]) = (11.1 ±1.0 ±1.4) × 10⁻⁶

- First evidence of mixing-induced CPV with 3.1σ in B \rightarrow a₁π.
 - $$\begin{split} \varphi_{2,\text{eff}} & \text{determined with a 4-fold ambiguity :} \\ \phi_{2,\text{eff}} = \frac{1}{4} [\arcsin(\frac{\mathbf{S}_{\text{CP}} + \Delta \mathbf{S}}{\sqrt{1 (\mathbf{C}_{\text{CP}} + \Delta \mathbf{C})^2}}) \\ &+ \arcsin(\frac{\mathbf{S}_{\text{CP}} \Delta \mathbf{S}}{\sqrt{1 (\mathbf{C}_{\text{CP}} \Delta \mathbf{C})^2}})] \end{split}$$
 - [-25.5°, -9.1°] [34.7°, 55.3°] [99.1°, 115.5°] This is "effective" ϕ_2 . So "true" ϕ_2 will 100 150 be shifted. ϕ^{eff} (°) 50 $\rightarrow \phi_2$ using isospin analysis [M.Gronau and D.London, PRL 65 (1990) 3381] using SU(3) flavour symmetry [M.Gronau and J.Zupan, PRD 73 (2006) 057502]

ϕ_3 measurements from $B \rightarrow DK$

• Access ϕ_3 via interference between $B \rightarrow DK$ and $B \rightarrow \overline{D}K$

14

ϕ_3 measurements from $B \rightarrow DK$

- Reconstruct D in final states accessible to both D^0 and $\overline{D}{}^0$
 - D = D_{CP}, CP eigenstates as K^+K^- , $\pi^+\pi^-$, $K_s\pi^0$
 - GLW method (Gronau-London-Wyler)
 - D = D_{sup} , Doubly-Cabbibo-suppressed decay as K π
 - ADS method (Atwood-Dunietz-Soni)
 - Three-body decay as $D \rightarrow K_{s}\pi^{+}\pi^{-}$, $K_{s}K^{+}K^{-}$
 - GGSZ (Dalitz) method (Giri-Grossman-Soffer-Zupan)
- Largest effects due to
 - charm mixing
 - charm CP violation

negligible Y.Grossman, A.Soffer, J.Zupan [PRD 72, 031501 (2005)]

• Different B decay modes (DK, D*K, DK*)

– different hadronic factor (r_B , δ_B) for each.

Dalitz ($B^{-} \rightarrow [K_{S}\pi\pi]_{D}K^{-}$)

PRD 81, 112002 (2010) 657 M BB

• Avoid the modeling error by optimal binning of the Dalitz($K_s\pi\pi$) plot

$$\varphi_{3} = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$$

$$r_{B} = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$$

$$\delta_{B} = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^{\circ}$$

The 3rd errors come from binning in Dalitz plane. It can be reduced by using future BES-III data. In the Super B-Factory era, no more model error is dominant.

GLW and ADS

Preliminary (LP2011) 772 M BB

 $GLW (B^{-} \rightarrow DK^{-})$

B→DK, D→KK, ππ (CP+)

 $B \rightarrow DK, D \rightarrow K_s \pi^0, K_s \eta$ (CP-)

ADS (comparison charged and neutral B mode)

- ADS in charged B
 - amplitude ratio (r_B) for the two paths is 0.1~0.2
 - Suppressed B decay × Favored D decay × color suppression
 - Favored B decay × Doubly Suppressed D decay

- B flavor is tagged by the charge of K from K*.
- Both path is color suppressed.
 - The amplitude ratio (r_s) can be upto 0.4
 - \rightarrow larger CPV and higher sensitivity to ϕ_3 are expected!!

Summary

• Now we know CKM precision.

• still interesting updates in the pipeline (especially on ϕ_2 and ϕ_3)

– new Belle result shown today on $B \rightarrow a_1 \pi$

Thank you!!

Bilsnerlin

Back up

measuring the CP parameter S and A

[Kπ]_DK*0

+2.2-1.4

+0.0-0.1

+0.1-0.1

+0.1-0.1

+0.0-0.3

+2.8-1.8

 $q\bar{q}$ PDFs

Fit bias

Total

Efficiency

Charmless decay

 $\bar{D}^0 K^+$ and $\bar{D}^0 \pi^+$ PDFs

