[Measurement of Forward-Backward Asymmetry in the $B \rightarrow X_s l^+l^-$ with Semi-inclusive Method]

「準包括的再構成法を用いた*B → X_sl+l⁻* 崩壊 におけるレプトン前後非対称度の測定」

博士論文発表会 佐藤 優太郎 素粒子実験

Flavor Changing Neutral Current

禁止

S

S

Operator Product Expansion / Wilson 係数

- ハミルトニアンをWilson 係数と実効オペレータを使って、書き表す。 $H \sim \sum C_i O_i$
 - 重い粒子(W,Z, t, ...) \dot{e}^{1} つのバーテックスに押し込める。
 - 標準理論において、b→s l+l-遷移は3つのWilson係数に感度がある。

 Wilson 係数は標準理論において精度よく計算されており、 新物理はその「ずれ」、もしくは「新たなオペレータ」として観測される。

b →s l+l-遷移

- ペンギン/ボックスダイアグラムの複雑な干渉により、
 多彩な標準理論のテストが可能。
- 稀崩壊(分岐比~10⁻⁶)だが、レプトンがあるため背景事象と分離しやすい。
- 豊富な観測量: レプトン対の不変質量の2 乗 "q²"の関数で表される
 - 崩壊幅
 - CP 対称度 "A_{CP}"
 - **Forward-backward asymmetry** " A_{FB} "]
 - アイソスピン対称度 "A_I"
 - K^{*}の偏極度 "F_L" などの角分布
 - レプトン普遍性

~ 本解析のターゲット

Forward-Backward Asymmetry (A_{FB})

cosθ: レプトン対の静止系における、bとl⁺の間の角。
 Forward event
 Backward event

- Vector(C_7, C_9) \mathcal{E} axial-vector(C_{10}) の干渉で A_{FB} が生じる
- Wilson 係数(C₇, C₉, C₁₀) によってA_{FB} の分布が大きく変化する。

$B \rightarrow K^*$ *l+l*-を用いた*A_{FB}*の測定状況

解析手法

Exclusive Reconstruction: X_s の特定の終状態(K, K^*)を観測。

Inclusive Reconstruction : X_sの終状態によらず観測。

- **Given Second Fully Inclusive Reconstruction**
 - *X_s*を観測しない。
 - ・ 膨大な背景事象があるため解析は非現実的。

Given Semi-inclusive Reconstruction

• X_sをできる限り多くの終状態から観測し、足し合わせる。

手法	ハドロン化による不定性	背景事象との分離
Exclusive	Δ	Ø
Fully inclusive	Ø	Δ
Semi-inclusive	Ο	0

現在までに、(Semi-)inclusive reconstruction method を用いて b → s l+l- 遷移を測定されたものは崩壊分岐比のみ。

→ 本解析で、レプトン前後非対称度を世界初測定。

ストレンジネス1を

もつ終状態の総称

Belle 実験「KEKB 加速器」

<u>KEKB 加速器 (1999-2010)</u>

- 重心系エネルギー:主に10.58 GeV
 Y(4S) → BB
- 非対称エネルギー: βγ = 0.425
- ・ 世界最高のルミノシティ
 - (積分):1040 fb⁻¹
 - (瞬間): $2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Belle 実験「Belle 検出器」

粒子識別 $\left[K^{\pm}/\pi^{\pm}\right]$

 K^{\pm}/π^{\pm} 識別: 粒子の質量(=速度)の測定 $m = p\sqrt{\frac{1}{\beta^2}-1}$

3つの検出器の情報をまとめる(Likelihood 比)。
 - K[±] 中間子選択効率 ~ 90%
 - π[±] 中間子誤識別確率~ 10%

 $(i = K, \pi)$

 $\mathcal{P}_{K/\pi} = \frac{\mathcal{L}_K}{\int_{-K} + \int_{-\pi}}$

粒子識別「e[±], μ[±]」

- <u>e[±] 識別</u> : 電磁カロリーメータで測定 する電磁シャワーから電子を識別。
- エネルギーと運動量の比 (E/p)
- クラスター形状 (E₉/E₂₅)
- 飛跡とクラスターの整合性
- ・ チェレンコフ光
- エネルギー損失

- 情報をまとめる(Likelihood 比)。
 レプトン選択効率~90%
 - π[±] 誤識別確率~0.2 %(*e*) / 1(μ) %

<u>μ[±] 識別</u> : KLM(鉄)の反応から透過 カが強いμ[±]と他の粒子を識別。

- 貫通距離
- 飛跡と KLM ヒット点との整合性

信号事象のMC 生成

- 3種類のMCを生成して、測定されている崩壊分岐比に合わせて、 混ぜ合わせる。
- 1. $B \rightarrow K l^+ l^- (12.3\%)$
- 2. $B \rightarrow K^* l^+ l^- (29.5\%)$
- 3. $B \rightarrow \text{non resonant } X_s l^+l^- (58.2\%)$

- <u>崩壊分岐比@HFAG2010</u>
- Br $[B \rightarrow Kl^+l^-]: 0.45 \times 10^{-6}$
- Br $[B \rightarrow K^* l^+ l^-]$: 1.08 × 10⁻⁶
- Br $[B \rightarrow sl^+l^- \text{(total)}] : 3.66 \times 10^{-6}$
- B → X_sγで観測されているX_sの質量分布を
 再現するようにM_{Xs} > 1.1 GeV を要求。
 生成したMC のX_s 質量分布

解析で用いるモード

- A_{FB}の測定には20の終状態を使用。
 - B 中間子のフレーバーが識別できない終状態は使用しない。
 - フレーバーはX_s or K の電荷から識別。

- 終状態[K4π] は再構成できる数が少ないため、使用しない。

終状態間の混じり(Cross-feed)を抑制するため、

A_{FB}の測定に使用しない終状態も再構成する。

→ 20 の終状態で、X_sの崩壊のうち、50%をカバー。(K_Lも含めると、59%。)

- 1. 事象再構成
- 2. 背景事象の排除
- 3. ニューラルネットワークを用いた背景事象の分離
- 4. q^2 をビン分けして、 q^2 をビンごとにforward/backward eventの M_{bc} 分布をフィットして A_{FB} を求める。

<u>荷電粒子 (e[±], μ[±], K[±], π[±])</u>

- 衝突点付近から来ていること
- $p_e^{\ lab} > 0.40 \ {\rm GeV}$
- $p_{\mu}^{\ \ lab} > 0.80 \text{ GeV}$
 - レプトンと同じ方向(50mrad) に飛んでいるγ は bremsstrahlung γ とみなす。
- 粒子識別

<u>K_S (→ π⁺π⁻) 再構成</u>

- 衝突点から離れたバーテックス
- 2つの飛跡の間の距離
- 再構成したK_sの運動量の向きと衝突点の方向
- $|M(\pi\pi) M(K_S)| < 15 \text{ MeV}$

<u>π⁰ (→ γγ) 再構成</u>

- $E^{lab}_{\gamma} > 50 \text{ MeV}$
- $E^{lab}_{\pi 0} > 400 \text{ MeV}$
- $|M(\gamma\gamma) M(\pi^0)| < 10 \text{ MeV}$

背景事象除去

- $M_{ee} > 0.2 \text{ GeV}$ ロチャーモニウム事象 $X_s (l^+ l^- (\gamma))_{cc}$
- J/ψ, ψ(2S) の質量に近い領域を排除。
 J/ψの質量領域で排除した事象は コントロールサンプル「X_s J/ψ」として用いる。

<u>X_sの質量</u>

- ランダムな組み合わせによる背景事象の除去。
- $M_{Xs} < 2.0 \, {\rm GeV}$

再構成されたレプトン対の質量分布

信号再構成

背景事象の分離

1. Semi-leptonic 崩壊事象

「2 つのニュートリノが出ること」、 「レプトン対の間の距離」を 利用して分離する。

「イベントの形状」により分離する。

ニューラルネットワークを用いた背景事象との分離

19

ニューラルネットワークを用いて、信号事象と背景事象を分離する。

[、]合計23 個のパラメータを使用。

- 1. レプトン対の間のz 方向の最小距離
- 2. B 崩壊点再構成の信頼度
- 3. ビーム重心系でのB の飛行方向
- 4. Energy difference ΔE
- 5. Missing mass
- 6. Visible energy
- 7. ルジャンドル多項式を用いた17個のイベント形状パラメータ

パラメータの例

ニューラルネットワークの出力/最適化

 レプトンのフレーバー(ee/µµ)、背景事象の種類(qq/BB)ごとにトレーニング して、4 つのニューラルネットワーク出力NBを得た。

ニューラルネットワーク出力

 レプトンのフレーバー(ee/μμ)、背景事象の種類(qq/BB)ごとにトレーニング して、4 つのニューラルネットワーク出力NBを得た。

 それぞれのX_s 質量領域で信号の有意度が 最大になるようにNBの選択領域を最適化。

 $- M_{Xs} < 1.1 \text{ GeV} (K^{(*)}l^+l^- 領域)$

- $M_{Xs} > 1.1$ GeV (Non-resonant $X_s l^+ l^-$ 領域)
- 同一事象内に複数のB 候補がある場合は NB_{BB} をもとに1 つのB 候補を選択。

qq 背景事象

BB 背景事象

背景事象分離後の M_{bc} 分布

- ・ ニューラルネットワークを導入することにより、背景事象分離能力が向上。 - 信号有意度(= $S/\sqrt{S+B}$)
 - Likelihood 法 : 9.7 🛰
 - ニューラルネットワーク: 10.6
- 信号領域にピークを作る背景事象「ピーキング背景事象」を評価する。

信号領域にピークをつくる背景事象

- 3 つのピーキング背景事象 がある。
 - ピーキング背景事象はできる限りデータをもとに評価した。

Double miss-PID 事象の見積もり

- ・ ピーキング背景事象の原因となる事象を選択する。
 - Double miss-PID: レプトン候補に関する要求を反転。

- ・ π をレプトンと誤識別する確率(f_l) で重みづけをして、実際にピーキング 背景事象となる事象数を求める。 $w = f_{\ell^+} \cdot f_{\ell^-}$
- MCを用いて見積もり方法が正しいことを確認したのち、 データを用いて、見積もりを行った。

Swapped miss-PID 事象の見積もり

- ・ ピーキング背景事象の原因となる事象を選択する。
 - Swapped miss-PID: チャーモニウム事象除去の条件を反転。

- $\pi \epsilon \nu \beta \nu \epsilon_{\pi}$ 、 $\pi \epsilon \nu \beta \nu \epsilon_{\pi}$ 、 $\pi \epsilon_{\pi}$ (1 - ϵ_{π})
- MCを用いて、見積もり方法が正しいことを確認したのち、 データを用いて、見積もりを行った。

q² binning

q² を6 つのビンに分ける。

- $3^{rd} \& 5^{th} q^2 bin は J/\psi と \psi(2S) の排除領域に対応。$

• q^2 ビンごとにforward/backward 領域の M_{bc} 分布をフィットすることにより A_{FB} を測定する。

Correction Function

• 再構成効率の q^2 —cos θ 依存性によって、直接観測される A_{FB}^{raw} は 真の値 A_{FB} からずれてしまう。

 $\rightarrow A_{FB}^{raw}$ を真の A_{FB} に変換する Correction function を q^2 bin ごとに用意する。

Correction function ~作り方~

Wilson係数を標準理論の値から変化させ、信号事象のMCを生成して、
 A_{FB}とA_{FB}^{raw}の間の関係を求める。

Wilson 係数の値を変化させた範囲 [A_7]+ A_7 SM, $-A_7$ SM [A_9, A_{10}] -200% ~ +200 % (A_i は C_i のleading term)

 $1^{\text{st}} q^2$ bin \mathcal{O} correction function

A_{FB} 測定

<u>方針</u>

• Extended unbinned maximum likelihood fit で4つの M_{bc} 分布を同時フィット。

 $N_{(ee)}$

 $A_{FB(ee)}^{raw}$. $N_{(\mu\mu)}^{raw}$.

 A_{FB}

- Forward/backward event を同時にフィットして直接A_{FB}を求める。
- Correction function を用いて $X_s e^+e^- L X_s \mu^+\mu^-$ も同時にフィット。
 - $A_{FB}(X_{s}e^{+}e^{-}) = A_{FB}(X_{s}\mu^{+}\mu^{-})$ を仮定。

A_{FB} 測定

PDF

- □ 信号事象: ガウス分布
 - 形は $X_s J/\psi$ データを用いて決定。
- Cross-feed: MC から求めたhistogram-PDF
 - 事象数は信号事象数に比例
- □ 背景事象: ARGUS 関数
- □ピーキング背景事象: histogram-PDF
 - チャーモニウム事象
 - Double miss-PID
 - Swapped miss-PID

フィット結果 (1st q² bin)

フィット結果 (2nd q² bin)

フィット結果 (4th q² bin)

フィット結果 (6th q² bin)

T.	么大	글但	¥
术	亚	录	石

Sources	$\sigma_{A_{FB}}$			
Sources	1st q^2 bin	2nd q^2 bin	$4 \text{th} q^2 \text{bin}$	$6 \text{th} q^2 \text{ bin}$
Signal shape and Self cross-feed	0.002	0.002	0.002	0.002
Peaking background	0.003	0.050	0.004	0.001
Reconstruction and PID efficiency	0.000	0.000	0.000	0.000
Fermi motion	0.002	0.001	0.004	0.004
b-quark mass	0.002	0.001	0.003	0.000
X_s - K^* transition	0.001	0.001	0.002	0.003
Hadronization	0.001	0.000	0.001	0.000
Fraction of $[K/K^*/X_s]\ell^+\ell^-$	0.001	0.001	0.002	0.003
Sign flipped SM A_7	0.015	0.001	0.000	0.001
Width of the correction function	0.012	0.004	0.006	0.003
Total	0.020	0.050	0.009	0.007

- フィットの際に固定したパラメータを動かして、見積もる。
- ピーキング背景事象の見積もりの誤差で事象数を変化させる。
 チャーモニウム事象に関しては±100%で変化させる。
- 信号事象のMCを生成するときの入力パラメータを変化。
- Correction function 由来の誤差。
 *標準理論で存在するオペレータのみを仮定。

議論~標準理論の予言との比較~

議論 ~ B → K* l+l-を用いた結果との比較~

Belle 実験で取得した711 fb⁻¹ (=7.72 億BB ペア)のデータを用いて、
 準包括的再構成法によりB → X_sl⁺l⁻ 崩壊におけるレプトン前後非対称度
 A_{FB}を測定した。

 $\begin{array}{lll} A_{FB}(&q^2 < 4.3 \ {\rm GeV}^2/c^4 &) &= & 0.34 \pm 0.24 ({\rm stat}) \pm 0.02 ({\rm syst}) \\ A_{FB}(&4.3 \ {\rm GeV}^2/c^4 < q^2 < J/\psi \ {\rm veto} \ {\rm region} \) &= & 0.04 \pm 0.31 ({\rm stat}) \pm 0.05 ({\rm syst}) \\ A_{FB}(q^2 \ {\rm between} \ J/\psi {\rm and} \ \psi(2S) {\rm veto} \ {\rm region} \) &= & 0.28 \pm 0.21 ({\rm stat}) \pm 0.01 ({\rm syst}) \\ A_{FB}(&q^2 \ {\rm above} \ \psi(2S) \ {\rm veto} \ {\rm region} \) &= & 0.28 \pm 0.15 ({\rm stat}) \pm 0.01 ({\rm syst}) \end{array}$

- q² が小さい領域(1st bin) において、標準理論の予言から1.8σ (6.6% C.L.) 離れている。
- *q*² が大きい領域(4th and 6th bin) において、2.3σ (97.9% C.L.) で*C*₁₀ **C*₉ の 項が負であることを示唆。
- この結果は標準理論を越える物理を制限するのに使われる。
- Belle II などでのWilson 係数を精密測定する際に、重要な役割を果たすことが期待される。