Development of PIXOR Tracking Detector

Yoshimasa Ono (Tohoku University)

Vertex detector

High energy experiment

- recent physics
 - High precision

Rare event

more statistics

- more frequent collision
- high radiation environment

We must find out effective and rare event from large BGs with many kind detectors.

- Requirements for detectors
 - separate from large BGs
 - high radiation tolerance
 - more frequent DAQ

Event display @Belle

Vertex detector

reconstruct tracks

- vertex pointing with high precision
- closest to interaction point

Requirements for vertex detector

- fine position resolution (~10um)
- low occupancy
 - high BG separation power
- high radiation tolerance(~10Mrad)
- low material
- low power consumption

Our target : Belle II vertex

Geometry of Belle II vertex detector

nominal design

sensor : DSSD (50um*160um) readout: APV25 + 8~10bit ADC occupancy ~ 5.5 % ⊗LARGE⊗

We want to replace ...

Our SOI

- lower occupancy
- lower material
- finer position resolution

PIXOR & circuit

Dilemma for readout chip-on sensor

general monolithic/hybrid pixel detector = readout chip-on sensor

We greedily require both of them.

Pixel OR (PIXOR) scheme

A PIXOR detector consists of the array of SuperPixels.

Pixel OR (PIXOR) scheme

We can solve your dilemma. ———— PIXOR [piksər]

A signal from the pixel-node is divided into two directions (X, Y)

The ORed signal is processed by a readout circuit on its SuperPixel.

We get the 2-dimentional hit info.

4 OR PIXOR (16 pixels -> 8 circuits) SuperPixel readout circuit Psub

The number of circuits on a SuperPixel is reduced

It's like an intermediate structure between pixels and strips.

Advantage of PIXOR

of circuits is reduced and depends on # of ORed pixels.

- **[☉]** advantage
- With keeping the point resolution, complex circuitry can be mounted.
- **Side-effect**
- ghost appear
- signals become 1/2

Currently, we select 16-pixels OR structure (256 -> 32channels).

for Belle II DAQ/vertex system

Trigger DAQ

- We take the data by a trigger signal when the event shape is worth of our physics.
- The trigger is sent in 5us later from the real time to judge by the hardware processor, with the max 30kHz rate.

Layer#3 vertex detector	nominal design DSSD + APV25	SOI PIXOR
sensor type	double-sided strip	PIXOR (16 OR)
pitch	φ:50um z:160um	35um * 70um
thickness	300um	50 or 100um ☺
max trigger latency	5us	12 us
system CLK	42.33 MHz	42.33 MHz
analog delimiter	8~10 bit	1 (binary)
estimated occupancy	5.5 %	0.035 % ©

Circuitry

1 channel circuitry

- Analog part : gain ~ 100uV/e- (Preamplifier + Shaper)
- Binary readout : Discriminator(external threshold+4bit fine tuning)
- **C**: no candidate here, sorry
- Digital part: store hit information during trigger latency

Evaluation

Activity of PIXOR evaluation

PIXOR1 -> PIXOR2

- skip the details mainly digital part
 - counter*2 /ch
 - hit address readout
- pixel pitch change
 - 25um*40um=>35um*70um circuit area enlarge

Evaluated contents PIXOR1

- Analog signal division
 - single/double SOI
- Trigger handling circuit (digital)
- Discriminator

Analog signal division

- To get 2-dimensional information,
 - PIXOR must divide an analog signal into the two-directions equally.

- Cleanly divided !! => PIXOR scheme works well.
- calculated gain = 130 uV/e

Trigger handling circuit

- To suit the trigger DAQ system,
 - PIXOR must store the hit information during the trigger latency.

- Exactly stored !! => The digital circuit works well.
- We have confirmed good operation with 25 and 50 MHz clock.

Double SOI:

- Up to here, the results are OFF-sensor's.
 - Because we'd like to avoid the crosstalk between sensor and circuit.

The double SOI wafer may solve this problem ...

Double SOI: β -ray signal found!!

With double SOI wafer in ON-sensor region

- Signals found !!
- Double SOI can suppress the crosstalk.
- First discovery !?
 - CNTPIX type
 - ON-sensor
 - SOIPIX

Summary

- We are developing SOI PIXOR detector for high energy experiments.
- PIXOR is a new readout scheme which solves the trade-off between the point resolution and circuit functionality.
- We fabricated two prototypes called PIXOR1 and PIXOR2. Then the PIXOR1 is still being evaluated.
- The results of the PIXOR1 are summarized as this table.

contents	status	
Analog signal division	© Succeeded	
Trigger handling circuit	©Succeeded	
ON-sensor's signal with double SOI	© Succeeded	

Analog signal division	© Succeeded
Trigger handling circuit	© Succeeded
Discriminator trimming	®Under investigation
sor's signal with double SOI	©Succeeded

Appendix

Discriminator

- To set the thresholds uniformly by adjusting 4bit-DAC on each channel,
 - we must measure individual characters of the discriminators.

