

国際リニアコライダーにおけるトップクォーク 対生成閾値領域の研究

2013/9/22 @高知大 堀口朋裕(東北大学) 石川明正、清裕一郎¹、末原大幹、隅野行成、藤井恵介²、山本均 東北大,¹順天堂大,²KEK

1

2013/9/25

目次

シミュレーションと再構成
 信号事象と背景事象
 シミュレーション
 再構成法(6-Jet, 4-Jet)

> <u>まとめ</u>

本研究の目的

> トップ対共鳴状態でのQCD波動関数

全断面積測定と質量、崩壊幅、トップ湯川結合

 $\sigma_{tt} = f(\sqrt{s}, m_t, \Gamma_t, \alpha_s, m_h, \mathbf{y}_t)$

閾値スキャンをして断面積を測定しフィットすることで 基本パラメータの精密測定が可能になる

◎閾値付近では potential subtracted(PS) mass** という強い相互作用 との相関が小さい質量が定義可能 ** arXiv:hep-ph/9804241

信号事象と背景事象

シミュレーション

トップの質量(MC mass)	174 GeV
重心系エネルギー(E _{cM}) (<mark>閾値スキャン</mark>)	<u> 340 - 350GeV (1 GeVごとに11点)</u>
<u>偏極率(</u> pol)	p(e ⁺ ,e ⁻) = (-30%, +80%), (+30%, -80%) (ここでは <u>右巻き、左巻き</u> と呼ぶ)
積分ルミノシティ	10 fb ⁻¹ (各E _{CM} & pol, 計220fb ⁻¹) ※350GeVの運転スケジュール未定
イベント生成	Physsim (LO ,no higgs exchange/on QCD enhancement, on ISR/ beamstralung/beam energy spread)
検出器シミュレーション	ILD_01_v05 (DBD ver.)

ILD検出器の詳細技術設計書に則った最新のシミュレーション結果

Jetの再構成と孤立レプトンの抽出 **ODurham** アルゴリズムで粒子群をjetに再構成 ○Y値の最小化 · NOjin $2min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$ $Y_{ij} =$ $Eevis^2$ Y_{ii}が最小になるi,jを見つけ出し強制的に一つにまとめる $p_1 p_2 \dots p_i p_j p_k \dots p_{n-1} p_n$ $p_1 p_2 \dots p_{i'} p_k \dots p_{n-2} p_{n-1}$ (GeV) ◎孤立レプトンの抽出 **6jets** 高い運動量を持つトラックを中心にコーンを作る。 **4jets** ConeEnergy コーン内のエネルギーが小さいものを選び出す。 60 Jet like Lepton like 40 20 0 20 0 40 60 80 100

2222D-2

Track Energy (GeV)

再構成(6-Jet & 4-Jet)

①孤立レプトン抽出後の粒子群からDurhamで4-Jetに再構成 ②bクォークタギングツールでbらしいJetを2つ選ぶ ③Wの再構成:損失した4元運動量をニュートリノの4元運動量とみなし孤立レプトンと組み 合わせWを再構成する。残り2本のJetでWを再構成 ④Wとbを組み合わせトップを再構成し、χ²で最適化する。

事象選別

有意度が最大になるように選別する

選別結果 6Jet @350GeV 左巻き

1	$\mathcal{L}(t)dt = 10 \; (\mathrm{fb}^{-1})$			S =	$S = - \frac{signal}{-}$				
J		信号		背	「景事象	۶	\sqrt{sign}	aal + ba	ackground
		<u> </u>	ſ					h	
	Ecm=350(GeV)	tt6j	tt4j	tt2j	WW	ZZ	ZH	6f	S _{6i}
	Generated	3287	3166	762	65328	6008	1389	469	11.6
	btag1 > 0.1 × 2	3126	2986	717	7275	2818	981	382	17
	Thrust<0.84	3082	2870	638	835	919	812	366	29
	Evis>300 GeV	3049	1100	29	419	595	602	203	39.1
	# of lepton = 0	3018	367	2	416	593	596	185	41.7
	missPt<38GeV	3005	193	0	416	589	589	183	42.4
	m _t >100 × 2	2991	187	0	351	493	497	181	43.5
	y45> 0.0015	2924	146	0	143	152	168	172	48
	# of pfos<86	2895	120	0	92	128	151	165	48.6
	M _w >30GeV × 2	2884	116	0	87	118	141	164	48.7

6f:トップが出ない6フェルミオン過程

断面積の統計誤差: 1/48.7 = 2.1%

選別結果 4Jet @350GeV 左巻き

	$\mathcal{L}(t)dt = 10 \ ($	(fb^{-1})				S =		sign	al	
J		信号		背	「景事 象	₹	\sqrt{sigr}	al + be	ackground	
	Ecm=350(GeV)	tt4j	tt6j	tt2j	WW	ZZ	ZH	6f+4f	S _{4i}	
	Generated	3166	3287	762	65328	6008	1389	130817	., 11.2	
	# of lepton = 1	2406	135	224	1484	119	103	60007	9.5	
	btag1 > 0.1 × 2	2245	127	212	111	32	35	2661	30.5	
	Thrust<0.845	2184	126	185	21	15	29	404	40.1	
	missPt>9GeV	2142	40	183	3	4	22	397	40.5	
	240 <evis<350 gev<="" th=""><th>1996</th><th>27</th><th>77</th><th>2</th><th>4</th><th>16</th><th>127</th><th>42.1</th><th></th></evis<350>	1996	27	77	2	4	16	127	42.1	
	m _t >100 × 2	1971	18	66	1	3	14	83	42.4	
	# of pfos<160 # of pfos>50	1963	17	53	1	3	12	55	42.8	

4f : ZZ, WWがハドロンとレプトンに崩壊するものの合計

断面積の統計誤差: 1/42.8 = 2.3%

トップ湯川結合の統計誤差の見積もり

全エネルギー(340 - 350GeV)と偏極、6-Jet, 4-Jetの有意 度からトップ湯川結合の<u>統計誤差</u>を見積もった。

トップの質量と崩壊幅の側定

断面積のフィット①

③理論断面積テーブルの作成: α_sを固定し、トップ質量(PS質量)、崩壊幅、重心系 エネルギーを変えてテンプレートを作成。

◎LOからNNLOへスケール:

LOで行った選別の<u>検出効率</u>を用いてNNLOの信 号数にスケールする。

◎断面積のフィット

Toy-MC法を用いてフィットする。 中心値を

 $(m_t^{PS}, \Gamma_t) = (172.000, 1.400)$ として、スケールした信号数(NNLO)と背景事象 数(LO)をポアソン分布に従う乱数で振り、質量と 崩壊幅を内挿して同時フィットを行う。

断面積のフィット2

◎閾値付近の断面積測定のためビーム効果を考えなければならない

フィット結果

	統計誤差	m _t ^{PS} (GeV) 6Jet	Γ _t (GeV) 6Jet	m _t ^{PS} (GeV) 4Jet	Γ _t (GeV) 4Jet		
	Left(110fb ⁻¹)	172.000 ± 0.023	1.400 ± 0.029	171.999 ± 0.024	1.400 ± 0.030		
	Right(110fb ⁻¹)	172.000 ± 0.034	1.399 ± 0.042	171.999 ± 0.033	1.397 ± 0.042		
	Left (110fb ⁻¹) 172.000 ± 0.020 + Right(110fb ⁻¹)		1.399 ± 0.024	172.000 ± 0.019	1.399 ± 0.025		
	Combined 6Jet + m_t^{PS} (GeV)Combined 4Jet172.000 \pm 0.014		Γ _t (GeV) 1.400± <mark>0</mark>	※断面 100Me	積の理論計算には V程度の不定性があ	53	
th (GeV)	$\widehat{\mathbf{O}} \xrightarrow{\mathbf{PS}} \overline{\mathbf{MS}} \operatorname{mass} m_t^{\overline{MS}} \sim m_t^{PS} - \frac{4}{3\pi} (m_t^{PS} - \frac{4}{3\pi}) (m_t^{PS} - \frac{4}$						
	^{1.44} 6-Jet only	2 σ	現在のMS 質量 : m _t ^{MS} = 160 ⁺⁵ -4 (GeV				
vio	14	1σ	α _s (Mz)	PDG 0.1184 \pm	0.0007 (0.6%)		
top		1.399 GeV	$m_t^{\overline{MS}}$ (GeV)	163.80±0.013(stat	$\pm 0.054(\alpha_s) \pm \cdots$		
	1.38						
	1.36 - ma	ss of potential subtraction scheme					
	171.96 171.98	172 172.02 172.04 top mass (GeV)	2aSD-5		2	20	

フィット結果

まとめと今後

<まとめ>

- トップが6-Jetと4-Jetが終状態の事象を信号とみなし、ILCが実現した際のトップ湯川結合、トップの質量、崩壊幅の統計エラーを見積もった。
- トップ湯川結合の統計誤差:3.0%
- PS massの精度: 14 MeV
 <u>MS</u>mass の精度: 13 MeV (stat) + 54 MeV(α_s) + ...
- 崩壊幅の測定精度:17 MeV

<今後>

- 前後非対称度の測定
- ・ QCD波動関数の測定